Properties

Label 2400.2.k.d
Level $2400$
Weight $2$
Character orbit 2400.k
Analytic conductor $19.164$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,2,Mod(1201,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.1201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.214798336.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 2x^{5} + 9x^{4} - 4x^{3} - 16x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + ( - \beta_1 - 1) q^{7} - q^{9} - \beta_{5} q^{11} + ( - \beta_{7} + \beta_{6}) q^{13} + ( - \beta_{4} + \beta_1) q^{17} + (2 \beta_{6} - \beta_{5} + \beta_{2}) q^{19} + (\beta_{7} + \beta_{2}) q^{21}+ \cdots + \beta_{5} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} - 8 q^{9} - 8 q^{23} - 8 q^{31} + 8 q^{57} + 8 q^{63} + 40 q^{71} - 16 q^{73} + 16 q^{79} + 8 q^{81} - 24 q^{87} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} - 2x^{5} + 9x^{4} - 4x^{3} - 16x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} - \nu^{6} - 2\nu^{5} - 2\nu^{4} + 7\nu^{3} + \nu^{2} - 4\nu - 12 ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{7} + 2\nu^{6} + 4\nu^{5} + 18\nu^{4} - 21\nu^{3} - 12\nu^{2} - 20\nu + 56 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{7} + 4\nu^{6} + 8\nu^{5} + 18\nu^{4} - 25\nu^{3} - 18\nu^{2} - 20\nu + 64 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{7} + 6\nu^{6} + 4\nu^{5} + 18\nu^{4} - 29\nu^{3} - 8\nu^{2} - 12\nu + 64 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 7\nu^{7} - 4\nu^{6} - 8\nu^{5} - 22\nu^{4} + 35\nu^{3} + 30\nu^{2} + 12\nu - 88 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 7\nu^{7} - 5\nu^{6} - 6\nu^{5} - 22\nu^{4} + 37\nu^{3} + 17\nu^{2} + 24\nu - 88 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 8\nu^{7} - 5\nu^{6} - 6\nu^{5} - 24\nu^{4} + 34\nu^{3} + 15\nu^{2} + 28\nu - 84 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{2} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{7} + 3\beta_{6} - \beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + \beta _1 + 7 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{7} + \beta_{6} + 2\beta_{4} + 4\beta_{2} - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{6} + 3\beta_{5} - 3\beta_{4} + 7\beta_{3} + \beta_{2} - 5\beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -2\beta_{7} + 2\beta_{6} - \beta_{5} + 4\beta_{4} + 2\beta_{3} - 7\beta_{2} + 3\beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 14\beta_{7} - 7\beta_{6} + 5\beta_{5} + 7\beta_{4} + 7\beta_{3} + 13\beta_{2} + 3\beta _1 + 1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1201.1
−0.565036 + 1.29643i
−1.08003 0.912978i
1.23291 + 0.692769i
1.41216 0.0762223i
−0.565036 1.29643i
−1.08003 + 0.912978i
1.23291 0.692769i
1.41216 + 0.0762223i
0 1.00000i 0 0 0 −4.72294 0 −1.00000 0
1201.2 0 1.00000i 0 0 0 −1.33411 0 −1.00000 0
1201.3 0 1.00000i 0 0 0 0.0802864 0 −1.00000 0
1201.4 0 1.00000i 0 0 0 1.97676 0 −1.00000 0
1201.5 0 1.00000i 0 0 0 −4.72294 0 −1.00000 0
1201.6 0 1.00000i 0 0 0 −1.33411 0 −1.00000 0
1201.7 0 1.00000i 0 0 0 0.0802864 0 −1.00000 0
1201.8 0 1.00000i 0 0 0 1.97676 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1201.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.2.k.d 8
3.b odd 2 1 7200.2.k.r 8
4.b odd 2 1 600.2.k.d 8
5.b even 2 1 2400.2.k.e 8
5.c odd 4 1 2400.2.d.g 8
5.c odd 4 1 2400.2.d.h 8
8.b even 2 1 inner 2400.2.k.d 8
8.d odd 2 1 600.2.k.d 8
12.b even 2 1 1800.2.k.t 8
15.d odd 2 1 7200.2.k.s 8
15.e even 4 1 7200.2.d.s 8
15.e even 4 1 7200.2.d.t 8
20.d odd 2 1 600.2.k.e yes 8
20.e even 4 1 600.2.d.g 8
20.e even 4 1 600.2.d.h 8
24.f even 2 1 1800.2.k.t 8
24.h odd 2 1 7200.2.k.r 8
40.e odd 2 1 600.2.k.e yes 8
40.f even 2 1 2400.2.k.e 8
40.i odd 4 1 2400.2.d.g 8
40.i odd 4 1 2400.2.d.h 8
40.k even 4 1 600.2.d.g 8
40.k even 4 1 600.2.d.h 8
60.h even 2 1 1800.2.k.q 8
60.l odd 4 1 1800.2.d.s 8
60.l odd 4 1 1800.2.d.t 8
120.i odd 2 1 7200.2.k.s 8
120.m even 2 1 1800.2.k.q 8
120.q odd 4 1 1800.2.d.s 8
120.q odd 4 1 1800.2.d.t 8
120.w even 4 1 7200.2.d.s 8
120.w even 4 1 7200.2.d.t 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.2.d.g 8 20.e even 4 1
600.2.d.g 8 40.k even 4 1
600.2.d.h 8 20.e even 4 1
600.2.d.h 8 40.k even 4 1
600.2.k.d 8 4.b odd 2 1
600.2.k.d 8 8.d odd 2 1
600.2.k.e yes 8 20.d odd 2 1
600.2.k.e yes 8 40.e odd 2 1
1800.2.d.s 8 60.l odd 4 1
1800.2.d.s 8 120.q odd 4 1
1800.2.d.t 8 60.l odd 4 1
1800.2.d.t 8 120.q odd 4 1
1800.2.k.q 8 60.h even 2 1
1800.2.k.q 8 120.m even 2 1
1800.2.k.t 8 12.b even 2 1
1800.2.k.t 8 24.f even 2 1
2400.2.d.g 8 5.c odd 4 1
2400.2.d.g 8 40.i odd 4 1
2400.2.d.h 8 5.c odd 4 1
2400.2.d.h 8 40.i odd 4 1
2400.2.k.d 8 1.a even 1 1 trivial
2400.2.k.d 8 8.b even 2 1 inner
2400.2.k.e 8 5.b even 2 1
2400.2.k.e 8 40.f even 2 1
7200.2.d.s 8 15.e even 4 1
7200.2.d.s 8 120.w even 4 1
7200.2.d.t 8 15.e even 4 1
7200.2.d.t 8 120.w even 4 1
7200.2.k.r 8 3.b odd 2 1
7200.2.k.r 8 24.h odd 2 1
7200.2.k.s 8 15.d odd 2 1
7200.2.k.s 8 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 4T_{7}^{3} - 6T_{7}^{2} - 12T_{7} + 1 \) acting on \(S_{2}^{\mathrm{new}}(2400, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 4 T^{3} - 6 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 32 T^{6} + \cdots + 1600 \) Copy content Toggle raw display
$13$ \( T^{8} + 44 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$17$ \( (T^{4} - 40 T^{2} + \cdots - 24)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + 116 T^{6} + \cdots + 380689 \) Copy content Toggle raw display
$23$ \( (T^{4} + 4 T^{3} - 56 T^{2} + \cdots - 88)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 144 T^{6} + \cdots + 627264 \) Copy content Toggle raw display
$31$ \( (T^{4} + 4 T^{3} + \cdots + 673)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 128 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$41$ \( (T^{4} - 64 T^{2} + \cdots + 328)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 244 T^{6} + \cdots + 4363921 \) Copy content Toggle raw display
$47$ \( (T^{4} - 72 T^{2} + \cdots - 176)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 256 T^{6} + \cdots + 23104 \) Copy content Toggle raw display
$59$ \( T^{8} + 432 T^{6} + \cdots + 31181056 \) Copy content Toggle raw display
$61$ \( T^{8} + 236 T^{6} + \cdots + 3025 \) Copy content Toggle raw display
$67$ \( T^{8} + 372 T^{6} + \cdots + 25979409 \) Copy content Toggle raw display
$71$ \( (T^{4} - 20 T^{3} + \cdots - 536)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 8 T^{3} + \cdots - 432)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 8 T^{3} + \cdots + 8080)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 368 T^{6} + \cdots + 3873024 \) Copy content Toggle raw display
$89$ \( (T^{4} - 224 T^{2} + \cdots + 10880)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 4 T^{3} + \cdots + 8881)^{2} \) Copy content Toggle raw display
show more
show less