Properties

Label 2400.2.f.c
Level $2400$
Weight $2$
Character orbit 2400.f
Analytic conductor $19.164$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{3} + i q^{7} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - i q^{3} + i q^{7} - q^{9} - 4 q^{11} + 3 i q^{13} - 4 i q^{17} + q^{19} + q^{21} + i q^{27} + 8 q^{29} + q^{31} + 4 i q^{33} + 2 i q^{37} + 3 q^{39} + 2 q^{41} + 11 i q^{43} - 2 i q^{47} + 6 q^{49} - 4 q^{51} + 10 i q^{53} - i q^{57} + 6 q^{59} + 11 q^{61} - i q^{63} + 9 i q^{67} + 6 q^{71} + 14 i q^{73} - 4 i q^{77} - 16 q^{79} + q^{81} - 2 i q^{83} - 8 i q^{87} - 3 q^{91} - i q^{93} - 11 i q^{97} + 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} - 8 q^{11} + 2 q^{19} + 2 q^{21} + 16 q^{29} + 2 q^{31} + 6 q^{39} + 4 q^{41} + 12 q^{49} - 8 q^{51} + 12 q^{59} + 22 q^{61} + 12 q^{71} - 32 q^{79} + 2 q^{81} - 6 q^{91} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1249.1
1.00000i
1.00000i
0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
1249.2 0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.2.f.c 2
3.b odd 2 1 7200.2.f.z 2
4.b odd 2 1 2400.2.f.p 2
5.b even 2 1 inner 2400.2.f.c 2
5.c odd 4 1 2400.2.a.e 1
5.c odd 4 1 2400.2.a.ba yes 1
8.b even 2 1 4800.2.f.bd 2
8.d odd 2 1 4800.2.f.g 2
12.b even 2 1 7200.2.f.d 2
15.d odd 2 1 7200.2.f.z 2
15.e even 4 1 7200.2.a.t 1
15.e even 4 1 7200.2.a.bk 1
20.d odd 2 1 2400.2.f.p 2
20.e even 4 1 2400.2.a.h yes 1
20.e even 4 1 2400.2.a.bd yes 1
40.e odd 2 1 4800.2.f.g 2
40.f even 2 1 4800.2.f.bd 2
40.i odd 4 1 4800.2.a.y 1
40.i odd 4 1 4800.2.a.by 1
40.k even 4 1 4800.2.a.v 1
40.k even 4 1 4800.2.a.bv 1
60.h even 2 1 7200.2.f.d 2
60.l odd 4 1 7200.2.a.q 1
60.l odd 4 1 7200.2.a.bh 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2400.2.a.e 1 5.c odd 4 1
2400.2.a.h yes 1 20.e even 4 1
2400.2.a.ba yes 1 5.c odd 4 1
2400.2.a.bd yes 1 20.e even 4 1
2400.2.f.c 2 1.a even 1 1 trivial
2400.2.f.c 2 5.b even 2 1 inner
2400.2.f.p 2 4.b odd 2 1
2400.2.f.p 2 20.d odd 2 1
4800.2.a.v 1 40.k even 4 1
4800.2.a.y 1 40.i odd 4 1
4800.2.a.bv 1 40.k even 4 1
4800.2.a.by 1 40.i odd 4 1
4800.2.f.g 2 8.d odd 2 1
4800.2.f.g 2 40.e odd 2 1
4800.2.f.bd 2 8.b even 2 1
4800.2.f.bd 2 40.f even 2 1
7200.2.a.q 1 60.l odd 4 1
7200.2.a.t 1 15.e even 4 1
7200.2.a.bh 1 60.l odd 4 1
7200.2.a.bk 1 15.e even 4 1
7200.2.f.d 2 12.b even 2 1
7200.2.f.d 2 60.h even 2 1
7200.2.f.z 2 3.b odd 2 1
7200.2.f.z 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2400, [\chi])\):

\( T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 9 \) Copy content Toggle raw display
\( T_{19} - 1 \) Copy content Toggle raw display
\( T_{31} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 9 \) Copy content Toggle raw display
$17$ \( T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 8)^{2} \) Copy content Toggle raw display
$31$ \( (T - 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T - 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 121 \) Copy content Toggle raw display
$47$ \( T^{2} + 4 \) Copy content Toggle raw display
$53$ \( T^{2} + 100 \) Copy content Toggle raw display
$59$ \( (T - 6)^{2} \) Copy content Toggle raw display
$61$ \( (T - 11)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 81 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 196 \) Copy content Toggle raw display
$79$ \( (T + 16)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 4 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 121 \) Copy content Toggle raw display
show more
show less