Properties

Label 2400.2.b.g.2351.3
Level $2400$
Weight $2$
Character 2400.2351
Analytic conductor $19.164$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,2,Mod(2351,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.2351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-2,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.537291533250985984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 14x^{8} - 30x^{6} + 56x^{4} - 80x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2351.3
Root \(1.26128 - 0.639662i\) of defining polynomial
Character \(\chi\) \(=\) 2400.2351
Dual form 2400.2.b.g.2351.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.57067 + 0.730070i) q^{3} -1.25539i q^{7} +(1.93400 - 2.29339i) q^{9} -3.02346i q^{11} -5.65509i q^{13} -2.45546i q^{17} -1.77801 q^{19} +(0.916519 + 1.97179i) q^{21} -8.84074 q^{23} +(-1.36333 + 5.01411i) q^{27} +3.79561 q^{29} +5.19897i q^{31} +(2.20734 + 4.74886i) q^{33} +6.45436i q^{37} +(4.12861 + 8.88227i) q^{39} +7.57276i q^{41} -4.37266 q^{43} +1.83304 q^{47} +5.42401 q^{49} +(1.79266 + 3.85672i) q^{51} -12.0528 q^{53} +(2.79266 - 1.29807i) q^{57} -4.91093i q^{59} -8.16586i q^{61} +(-2.87909 - 2.42791i) q^{63} +8.50466 q^{67} +(13.8859 - 6.45436i) q^{69} -7.00770 q^{71} -4.59465 q^{73} -3.79561 q^{77} +7.36659i q^{79} +(-1.51932 - 8.87083i) q^{81} +15.7510i q^{83} +(-5.96165 + 2.77106i) q^{87} +3.65716i q^{89} -7.09931 q^{91} +(-3.79561 - 8.16586i) q^{93} -13.8773 q^{97} +(-6.93400 - 5.84737i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} - 2 q^{9} + 4 q^{19} - 8 q^{27} + 18 q^{33} + 40 q^{43} - 36 q^{49} + 30 q^{51} + 42 q^{57} + 60 q^{67} + 12 q^{73} - 10 q^{81} + 24 q^{91} - 32 q^{97} - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.57067 + 0.730070i −0.906826 + 0.421506i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.25539i 0.474491i −0.971450 0.237245i \(-0.923755\pi\)
0.971450 0.237245i \(-0.0762446\pi\)
\(8\) 0 0
\(9\) 1.93400 2.29339i 0.644665 0.764465i
\(10\) 0 0
\(11\) 3.02346i 0.911609i −0.890080 0.455804i \(-0.849352\pi\)
0.890080 0.455804i \(-0.150648\pi\)
\(12\) 0 0
\(13\) 5.65509i 1.56844i −0.620483 0.784220i \(-0.713064\pi\)
0.620483 0.784220i \(-0.286936\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.45546i 0.595538i −0.954638 0.297769i \(-0.903758\pi\)
0.954638 0.297769i \(-0.0962424\pi\)
\(18\) 0 0
\(19\) −1.77801 −0.407903 −0.203951 0.978981i \(-0.565378\pi\)
−0.203951 + 0.978981i \(0.565378\pi\)
\(20\) 0 0
\(21\) 0.916519 + 1.97179i 0.200001 + 0.430281i
\(22\) 0 0
\(23\) −8.84074 −1.84342 −0.921711 0.387878i \(-0.873208\pi\)
−0.921711 + 0.387878i \(0.873208\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.36333 + 5.01411i −0.262373 + 0.964967i
\(28\) 0 0
\(29\) 3.79561 0.704827 0.352414 0.935844i \(-0.385361\pi\)
0.352414 + 0.935844i \(0.385361\pi\)
\(30\) 0 0
\(31\) 5.19897i 0.933763i 0.884320 + 0.466881i \(0.154623\pi\)
−0.884320 + 0.466881i \(0.845377\pi\)
\(32\) 0 0
\(33\) 2.20734 + 4.74886i 0.384249 + 0.826670i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.45436i 1.06109i 0.847657 + 0.530545i \(0.178013\pi\)
−0.847657 + 0.530545i \(0.821987\pi\)
\(38\) 0 0
\(39\) 4.12861 + 8.88227i 0.661107 + 1.42230i
\(40\) 0 0
\(41\) 7.57276i 1.18267i 0.806427 + 0.591333i \(0.201398\pi\)
−0.806427 + 0.591333i \(0.798602\pi\)
\(42\) 0 0
\(43\) −4.37266 −0.666824 −0.333412 0.942781i \(-0.608200\pi\)
−0.333412 + 0.942781i \(0.608200\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.83304 0.267376 0.133688 0.991023i \(-0.457318\pi\)
0.133688 + 0.991023i \(0.457318\pi\)
\(48\) 0 0
\(49\) 5.42401 0.774858
\(50\) 0 0
\(51\) 1.79266 + 3.85672i 0.251023 + 0.540049i
\(52\) 0 0
\(53\) −12.0528 −1.65558 −0.827792 0.561035i \(-0.810403\pi\)
−0.827792 + 0.561035i \(0.810403\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.79266 1.29807i 0.369897 0.171934i
\(58\) 0 0
\(59\) 4.91093i 0.639348i −0.947528 0.319674i \(-0.896427\pi\)
0.947528 0.319674i \(-0.103573\pi\)
\(60\) 0 0
\(61\) 8.16586i 1.04553i −0.852477 0.522766i \(-0.824900\pi\)
0.852477 0.522766i \(-0.175100\pi\)
\(62\) 0 0
\(63\) −2.87909 2.42791i −0.362732 0.305888i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.50466 1.03901 0.519505 0.854467i \(-0.326116\pi\)
0.519505 + 0.854467i \(0.326116\pi\)
\(68\) 0 0
\(69\) 13.8859 6.45436i 1.67166 0.777013i
\(70\) 0 0
\(71\) −7.00770 −0.831661 −0.415831 0.909442i \(-0.636509\pi\)
−0.415831 + 0.909442i \(0.636509\pi\)
\(72\) 0 0
\(73\) −4.59465 −0.537763 −0.268881 0.963173i \(-0.586654\pi\)
−0.268881 + 0.963173i \(0.586654\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.79561 −0.432550
\(78\) 0 0
\(79\) 7.36659i 0.828806i 0.910093 + 0.414403i \(0.136010\pi\)
−0.910093 + 0.414403i \(0.863990\pi\)
\(80\) 0 0
\(81\) −1.51932 8.87083i −0.168813 0.985648i
\(82\) 0 0
\(83\) 15.7510i 1.72890i 0.502720 + 0.864449i \(0.332333\pi\)
−0.502720 + 0.864449i \(0.667667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −5.96165 + 2.77106i −0.639156 + 0.297089i
\(88\) 0 0
\(89\) 3.65716i 0.387658i 0.981035 + 0.193829i \(0.0620907\pi\)
−0.981035 + 0.193829i \(0.937909\pi\)
\(90\) 0 0
\(91\) −7.09931 −0.744210
\(92\) 0 0
\(93\) −3.79561 8.16586i −0.393587 0.846760i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −13.8773 −1.40903 −0.704514 0.709690i \(-0.748835\pi\)
−0.704514 + 0.709690i \(0.748835\pi\)
\(98\) 0 0
\(99\) −6.93400 5.84737i −0.696893 0.587683i
\(100\) 0 0
\(101\) −13.8859 −1.38170 −0.690848 0.723000i \(-0.742763\pi\)
−0.690848 + 0.723000i \(0.742763\pi\)
\(102\) 0 0
\(103\) 7.36659i 0.725852i −0.931818 0.362926i \(-0.881778\pi\)
0.931818 0.362926i \(-0.118222\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.14076i 0.786997i −0.919325 0.393499i \(-0.871265\pi\)
0.919325 0.393499i \(-0.128735\pi\)
\(108\) 0 0
\(109\) 5.65509i 0.541659i 0.962627 + 0.270830i \(0.0872980\pi\)
−0.962627 + 0.270830i \(0.912702\pi\)
\(110\) 0 0
\(111\) −4.71213 10.1377i −0.447256 0.962223i
\(112\) 0 0
\(113\) 11.4884i 1.08073i 0.841429 + 0.540367i \(0.181715\pi\)
−0.841429 + 0.540367i \(0.818285\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −12.9693 10.9369i −1.19902 1.01112i
\(118\) 0 0
\(119\) −3.08255 −0.282577
\(120\) 0 0
\(121\) 1.85866 0.168969
\(122\) 0 0
\(123\) −5.52865 11.8943i −0.498501 1.07247i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 21.7081i 1.92628i −0.268993 0.963142i \(-0.586691\pi\)
0.268993 0.963142i \(-0.413309\pi\)
\(128\) 0 0
\(129\) 6.86799 3.19234i 0.604693 0.281070i
\(130\) 0 0
\(131\) 12.5212i 1.09398i 0.837139 + 0.546990i \(0.184227\pi\)
−0.837139 + 0.546990i \(0.815773\pi\)
\(132\) 0 0
\(133\) 2.23208i 0.193546i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.4649i 1.57757i 0.614672 + 0.788783i \(0.289288\pi\)
−0.614672 + 0.788783i \(0.710712\pi\)
\(138\) 0 0
\(139\) 11.6040 0.984237 0.492118 0.870528i \(-0.336223\pi\)
0.492118 + 0.870528i \(0.336223\pi\)
\(140\) 0 0
\(141\) −2.87909 + 1.33825i −0.242463 + 0.112701i
\(142\) 0 0
\(143\) −17.0980 −1.42980
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −8.51932 + 3.95990i −0.702661 + 0.326607i
\(148\) 0 0
\(149\) −11.9233 −0.976794 −0.488397 0.872621i \(-0.662418\pi\)
−0.488397 + 0.872621i \(0.662418\pi\)
\(150\) 0 0
\(151\) 10.0548i 0.818247i −0.912479 0.409124i \(-0.865834\pi\)
0.912479 0.409124i \(-0.134166\pi\)
\(152\) 0 0
\(153\) −5.63135 4.74886i −0.455268 0.383922i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.71150i 0.136593i −0.997665 0.0682964i \(-0.978244\pi\)
0.997665 0.0682964i \(-0.0217563\pi\)
\(158\) 0 0
\(159\) 18.9310 8.79941i 1.50133 0.697838i
\(160\) 0 0
\(161\) 11.0985i 0.874687i
\(162\) 0 0
\(163\) 11.9580 0.936621 0.468311 0.883564i \(-0.344863\pi\)
0.468311 + 0.883564i \(0.344863\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.583522 −0.0451543 −0.0225771 0.999745i \(-0.507187\pi\)
−0.0225771 + 0.999745i \(0.507187\pi\)
\(168\) 0 0
\(169\) −18.9800 −1.46000
\(170\) 0 0
\(171\) −3.43866 + 4.07767i −0.262961 + 0.311827i
\(172\) 0 0
\(173\) −12.0528 −0.916360 −0.458180 0.888860i \(-0.651498\pi\)
−0.458180 + 0.888860i \(0.651498\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.58532 + 7.71344i 0.269489 + 0.579778i
\(178\) 0 0
\(179\) 0.605490i 0.0452565i −0.999744 0.0226282i \(-0.992797\pi\)
0.999744 0.0226282i \(-0.00720340\pi\)
\(180\) 0 0
\(181\) 7.08790i 0.526840i −0.964681 0.263420i \(-0.915150\pi\)
0.964681 0.263420i \(-0.0848505\pi\)
\(182\) 0 0
\(183\) 5.96165 + 12.8259i 0.440698 + 0.948114i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −7.42401 −0.542897
\(188\) 0 0
\(189\) 6.29464 + 1.71150i 0.457868 + 0.124493i
\(190\) 0 0
\(191\) −18.9310 −1.36980 −0.684899 0.728638i \(-0.740154\pi\)
−0.684899 + 0.728638i \(0.740154\pi\)
\(192\) 0 0
\(193\) 4.27334 0.307602 0.153801 0.988102i \(-0.450849\pi\)
0.153801 + 0.988102i \(0.450849\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.0903 0.718901 0.359450 0.933164i \(-0.382964\pi\)
0.359450 + 0.933164i \(0.382964\pi\)
\(198\) 0 0
\(199\) 19.0199i 1.34829i −0.738601 0.674143i \(-0.764513\pi\)
0.738601 0.674143i \(-0.235487\pi\)
\(200\) 0 0
\(201\) −13.3580 + 6.20900i −0.942201 + 0.437949i
\(202\) 0 0
\(203\) 4.76495i 0.334434i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −17.0980 + 20.2753i −1.18839 + 1.40923i
\(208\) 0 0
\(209\) 5.37574i 0.371848i
\(210\) 0 0
\(211\) −5.49534 −0.378315 −0.189157 0.981947i \(-0.560576\pi\)
−0.189157 + 0.981947i \(0.560576\pi\)
\(212\) 0 0
\(213\) 11.0068 5.11611i 0.754172 0.350550i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 6.52671 0.443062
\(218\) 0 0
\(219\) 7.21667 3.35441i 0.487657 0.226670i
\(220\) 0 0
\(221\) −13.8859 −0.934065
\(222\) 0 0
\(223\) 7.70974i 0.516282i −0.966107 0.258141i \(-0.916890\pi\)
0.966107 0.258141i \(-0.0831100\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.40388i 0.491413i 0.969344 + 0.245706i \(0.0790199\pi\)
−0.969344 + 0.245706i \(0.920980\pi\)
\(228\) 0 0
\(229\) 17.1310i 1.13205i 0.824389 + 0.566024i \(0.191519\pi\)
−0.824389 + 0.566024i \(0.808481\pi\)
\(230\) 0 0
\(231\) 5.96165 2.77106i 0.392248 0.182322i
\(232\) 0 0
\(233\) 1.40807i 0.0922454i 0.998936 + 0.0461227i \(0.0146865\pi\)
−0.998936 + 0.0461227i \(0.985313\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −5.37812 11.5705i −0.349347 0.751583i
\(238\) 0 0
\(239\) −9.50673 −0.614939 −0.307470 0.951558i \(-0.599482\pi\)
−0.307470 + 0.951558i \(0.599482\pi\)
\(240\) 0 0
\(241\) 2.27334 0.146439 0.0732195 0.997316i \(-0.476673\pi\)
0.0732195 + 0.997316i \(0.476673\pi\)
\(242\) 0 0
\(243\) 8.86267 + 12.8239i 0.568540 + 0.822655i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.0548i 0.639771i
\(248\) 0 0
\(249\) −11.4993 24.7396i −0.728741 1.56781i
\(250\) 0 0
\(251\) 9.49772i 0.599491i −0.954019 0.299745i \(-0.903098\pi\)
0.954019 0.299745i \(-0.0969017\pi\)
\(252\) 0 0
\(253\) 26.7297i 1.68048i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.3144i 1.70382i −0.523686 0.851912i \(-0.675443\pi\)
0.523686 0.851912i \(-0.324557\pi\)
\(258\) 0 0
\(259\) 8.10270 0.503477
\(260\) 0 0
\(261\) 7.34070 8.70484i 0.454378 0.538816i
\(262\) 0 0
\(263\) −1.24952 −0.0770484 −0.0385242 0.999258i \(-0.512266\pi\)
−0.0385242 + 0.999258i \(0.512266\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.66998 5.74418i −0.163400 0.351538i
\(268\) 0 0
\(269\) −15.7189 −0.958399 −0.479199 0.877706i \(-0.659073\pi\)
−0.479199 + 0.877706i \(0.659073\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 11.1507 5.18299i 0.674869 0.313689i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.633548i 0.0380662i −0.999819 0.0190331i \(-0.993941\pi\)
0.999819 0.0190331i \(-0.00605879\pi\)
\(278\) 0 0
\(279\) 11.9233 + 10.0548i 0.713829 + 0.601965i
\(280\) 0 0
\(281\) 20.9204i 1.24801i −0.781422 0.624003i \(-0.785505\pi\)
0.781422 0.624003i \(-0.214495\pi\)
\(282\) 0 0
\(283\) −14.6846 −0.872911 −0.436455 0.899726i \(-0.643766\pi\)
−0.436455 + 0.899726i \(0.643766\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.50673 0.561165
\(288\) 0 0
\(289\) 10.9707 0.645335
\(290\) 0 0
\(291\) 21.7967 10.1314i 1.27774 0.593914i
\(292\) 0 0
\(293\) −5.49911 −0.321262 −0.160631 0.987015i \(-0.551353\pi\)
−0.160631 + 0.987015i \(0.551353\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 15.1600 + 4.12197i 0.879672 + 0.239181i
\(298\) 0 0
\(299\) 49.9952i 2.89129i
\(300\) 0 0
\(301\) 5.48937i 0.316402i
\(302\) 0 0
\(303\) 21.8101 10.1377i 1.25296 0.582393i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6.11929 0.349246 0.174623 0.984635i \(-0.444129\pi\)
0.174623 + 0.984635i \(0.444129\pi\)
\(308\) 0 0
\(309\) 5.37812 + 11.5705i 0.305951 + 0.658221i
\(310\) 0 0
\(311\) 5.75819 0.326517 0.163258 0.986583i \(-0.447800\pi\)
0.163258 + 0.986583i \(0.447800\pi\)
\(312\) 0 0
\(313\) −21.9800 −1.24238 −0.621192 0.783658i \(-0.713351\pi\)
−0.621192 + 0.783658i \(0.713351\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.6815 0.993091 0.496545 0.868011i \(-0.334602\pi\)
0.496545 + 0.868011i \(0.334602\pi\)
\(318\) 0 0
\(319\) 11.4759i 0.642527i
\(320\) 0 0
\(321\) 5.94333 + 12.7864i 0.331724 + 0.713669i
\(322\) 0 0
\(323\) 4.36583i 0.242922i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4.12861 8.88227i −0.228313 0.491190i
\(328\) 0 0
\(329\) 2.30117i 0.126867i
\(330\) 0 0
\(331\) 7.14134 0.392523 0.196262 0.980552i \(-0.437120\pi\)
0.196262 + 0.980552i \(0.437120\pi\)
\(332\) 0 0
\(333\) 14.8024 + 12.4827i 0.811166 + 0.684048i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.90663 0.103861 0.0519303 0.998651i \(-0.483463\pi\)
0.0519303 + 0.998651i \(0.483463\pi\)
\(338\) 0 0
\(339\) −8.38731 18.0444i −0.455536 0.980038i
\(340\) 0 0
\(341\) 15.7189 0.851226
\(342\) 0 0
\(343\) 15.5969i 0.842154i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.530510i 0.0284793i 0.999899 + 0.0142396i \(0.00453277\pi\)
−0.999899 + 0.0142396i \(0.995467\pi\)
\(348\) 0 0
\(349\) 7.36659i 0.394325i −0.980371 0.197162i \(-0.936827\pi\)
0.980371 0.197162i \(-0.0631726\pi\)
\(350\) 0 0
\(351\) 28.3553 + 7.70974i 1.51349 + 0.411516i
\(352\) 0 0
\(353\) 11.2299i 0.597708i −0.954299 0.298854i \(-0.903396\pi\)
0.954299 0.298854i \(-0.0966044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.84167 2.25048i 0.256248 0.119108i
\(358\) 0 0
\(359\) −17.0980 −0.902396 −0.451198 0.892424i \(-0.649003\pi\)
−0.451198 + 0.892424i \(0.649003\pi\)
\(360\) 0 0
\(361\) −15.8387 −0.833615
\(362\) 0 0
\(363\) −2.91934 + 1.35695i −0.153226 + 0.0712216i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13.9984i 0.730709i 0.930868 + 0.365355i \(0.119052\pi\)
−0.930868 + 0.365355i \(0.880948\pi\)
\(368\) 0 0
\(369\) 17.3673 + 14.6457i 0.904107 + 0.762424i
\(370\) 0 0
\(371\) 15.1309i 0.785559i
\(372\) 0 0
\(373\) 21.5952i 1.11815i −0.829116 0.559077i \(-0.811155\pi\)
0.829116 0.559077i \(-0.188845\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.4645i 1.10548i
\(378\) 0 0
\(379\) −11.7780 −0.604996 −0.302498 0.953150i \(-0.597820\pi\)
−0.302498 + 0.953150i \(0.597820\pi\)
\(380\) 0 0
\(381\) 15.8484 + 34.0963i 0.811940 + 1.74680i
\(382\) 0 0
\(383\) 15.8484 0.809818 0.404909 0.914357i \(-0.367303\pi\)
0.404909 + 0.914357i \(0.367303\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.45670 + 10.0282i −0.429878 + 0.509763i
\(388\) 0 0
\(389\) −18.4770 −0.936822 −0.468411 0.883511i \(-0.655173\pi\)
−0.468411 + 0.883511i \(0.655173\pi\)
\(390\) 0 0
\(391\) 21.7081i 1.09783i
\(392\) 0 0
\(393\) −9.14134 19.6666i −0.461119 0.992050i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.3981i 0.923373i 0.887043 + 0.461687i \(0.152756\pi\)
−0.887043 + 0.461687i \(0.847244\pi\)
\(398\) 0 0
\(399\) −1.62958 3.50586i −0.0815809 0.175513i
\(400\) 0 0
\(401\) 0.183464i 0.00916176i 0.999990 + 0.00458088i \(0.00145814\pi\)
−0.999990 + 0.00458088i \(0.998542\pi\)
\(402\) 0 0
\(403\) 29.4006 1.46455
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 19.5145 0.967299
\(408\) 0 0
\(409\) −30.5933 −1.51274 −0.756371 0.654142i \(-0.773030\pi\)
−0.756371 + 0.654142i \(0.773030\pi\)
\(410\) 0 0
\(411\) −13.4807 29.0023i −0.664953 1.43058i
\(412\) 0 0
\(413\) −6.16511 −0.303365
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −18.2260 + 8.47171i −0.892531 + 0.414862i
\(418\) 0 0
\(419\) 13.9813i 0.683032i −0.939876 0.341516i \(-0.889060\pi\)
0.939876 0.341516i \(-0.110940\pi\)
\(420\) 0 0
\(421\) 26.7297i 1.30272i 0.758767 + 0.651362i \(0.225802\pi\)
−0.758767 + 0.651362i \(0.774198\pi\)
\(422\) 0 0
\(423\) 3.54509 4.20388i 0.172368 0.204400i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.2513 −0.496095
\(428\) 0 0
\(429\) 26.8552 12.4827i 1.29658 0.602671i
\(430\) 0 0
\(431\) 34.7794 1.67527 0.837633 0.546233i \(-0.183939\pi\)
0.837633 + 0.546233i \(0.183939\pi\)
\(432\) 0 0
\(433\) 19.8667 0.954731 0.477366 0.878705i \(-0.341592\pi\)
0.477366 + 0.878705i \(0.341592\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.7189 0.751937
\(438\) 0 0
\(439\) 2.85392i 0.136210i 0.997678 + 0.0681051i \(0.0216953\pi\)
−0.997678 + 0.0681051i \(0.978305\pi\)
\(440\) 0 0
\(441\) 10.4900 12.4394i 0.499524 0.592352i
\(442\) 0 0
\(443\) 13.6854i 0.650212i −0.945678 0.325106i \(-0.894600\pi\)
0.945678 0.325106i \(-0.105400\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 18.7275 8.70484i 0.885782 0.411725i
\(448\) 0 0
\(449\) 19.1132i 0.902008i 0.892522 + 0.451004i \(0.148934\pi\)
−0.892522 + 0.451004i \(0.851066\pi\)
\(450\) 0 0
\(451\) 22.8960 1.07813
\(452\) 0 0
\(453\) 7.34070 + 15.7927i 0.344896 + 0.742008i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.6133 1.05781 0.528903 0.848682i \(-0.322604\pi\)
0.528903 + 0.848682i \(0.322604\pi\)
\(458\) 0 0
\(459\) 12.3120 + 3.34760i 0.574674 + 0.156253i
\(460\) 0 0
\(461\) 13.2199 0.615711 0.307855 0.951433i \(-0.400389\pi\)
0.307855 + 0.951433i \(0.400389\pi\)
\(462\) 0 0
\(463\) 40.5506i 1.88455i 0.334845 + 0.942273i \(0.391316\pi\)
−0.334845 + 0.942273i \(0.608684\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.2492i 0.474276i −0.971476 0.237138i \(-0.923791\pi\)
0.971476 0.237138i \(-0.0762093\pi\)
\(468\) 0 0
\(469\) 10.6766i 0.493001i
\(470\) 0 0
\(471\) 1.24952 + 2.68820i 0.0575746 + 0.123866i
\(472\) 0 0
\(473\) 13.2206i 0.607883i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −23.3101 + 27.6419i −1.06730 + 1.26564i
\(478\) 0 0
\(479\) −31.4378 −1.43643 −0.718215 0.695821i \(-0.755041\pi\)
−0.718215 + 0.695821i \(0.755041\pi\)
\(480\) 0 0
\(481\) 36.5000 1.66425
\(482\) 0 0
\(483\) −8.10270 17.4321i −0.368686 0.793188i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0.177431i 0.00804018i −0.999992 0.00402009i \(-0.998720\pi\)
0.999992 0.00402009i \(-0.00127964\pi\)
\(488\) 0 0
\(489\) −18.7820 + 8.73016i −0.849352 + 0.394791i
\(490\) 0 0
\(491\) 7.75623i 0.350034i 0.984565 + 0.175017i \(0.0559980\pi\)
−0.984565 + 0.175017i \(0.944002\pi\)
\(492\) 0 0
\(493\) 9.31999i 0.419751i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.79736i 0.394616i
\(498\) 0 0
\(499\) −5.22067 −0.233709 −0.116855 0.993149i \(-0.537281\pi\)
−0.116855 + 0.993149i \(0.537281\pi\)
\(500\) 0 0
\(501\) 0.916519 0.426011i 0.0409470 0.0190328i
\(502\) 0 0
\(503\) 6.34171 0.282763 0.141381 0.989955i \(-0.454846\pi\)
0.141381 + 0.989955i \(0.454846\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 29.8113 13.8567i 1.32397 0.615399i
\(508\) 0 0
\(509\) −34.1959 −1.51571 −0.757854 0.652425i \(-0.773752\pi\)
−0.757854 + 0.652425i \(0.773752\pi\)
\(510\) 0 0
\(511\) 5.76805i 0.255164i
\(512\) 0 0
\(513\) 2.42401 8.91513i 0.107023 0.393613i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.54212i 0.243742i
\(518\) 0 0
\(519\) 18.9310 8.79941i 0.830978 0.386251i
\(520\) 0 0
\(521\) 32.6151i 1.42889i −0.699689 0.714447i \(-0.746678\pi\)
0.699689 0.714447i \(-0.253322\pi\)
\(522\) 0 0
\(523\) −14.6074 −0.638736 −0.319368 0.947631i \(-0.603471\pi\)
−0.319368 + 0.947631i \(0.603471\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.7659 0.556091
\(528\) 0 0
\(529\) 55.1587 2.39820
\(530\) 0 0
\(531\) −11.2627 9.49772i −0.488759 0.412166i
\(532\) 0 0
\(533\) 42.8246 1.85494
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0.442050 + 0.951024i 0.0190759 + 0.0410397i
\(538\) 0 0
\(539\) 16.3993i 0.706368i
\(540\) 0 0
\(541\) 13.0217i 0.559846i −0.960023 0.279923i \(-0.909691\pi\)
0.960023 0.279923i \(-0.0903089\pi\)
\(542\) 0 0
\(543\) 5.17466 + 11.1327i 0.222066 + 0.477752i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 37.8280 1.61741 0.808705 0.588214i \(-0.200169\pi\)
0.808705 + 0.588214i \(0.200169\pi\)
\(548\) 0 0
\(549\) −18.7275 15.7927i −0.799272 0.674018i
\(550\) 0 0
\(551\) −6.74863 −0.287501
\(552\) 0 0
\(553\) 9.24791 0.393261
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.0135 0.932744 0.466372 0.884589i \(-0.345561\pi\)
0.466372 + 0.884589i \(0.345561\pi\)
\(558\) 0 0
\(559\) 24.7278i 1.04587i
\(560\) 0 0
\(561\) 11.6607 5.42004i 0.492313 0.228834i
\(562\) 0 0
\(563\) 9.80727i 0.413327i −0.978412 0.206664i \(-0.933739\pi\)
0.978412 0.206664i \(-0.0662606\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −11.1363 + 1.90733i −0.467681 + 0.0801002i
\(568\) 0 0
\(569\) 22.4555i 0.941384i −0.882298 0.470692i \(-0.844004\pi\)
0.882298 0.470692i \(-0.155996\pi\)
\(570\) 0 0
\(571\) −5.92867 −0.248107 −0.124054 0.992276i \(-0.539589\pi\)
−0.124054 + 0.992276i \(0.539589\pi\)
\(572\) 0 0
\(573\) 29.7343 13.8209i 1.24217 0.577378i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −39.1587 −1.63020 −0.815098 0.579322i \(-0.803317\pi\)
−0.815098 + 0.579322i \(0.803317\pi\)
\(578\) 0 0
\(579\) −6.71200 + 3.11984i −0.278941 + 0.129656i
\(580\) 0 0
\(581\) 19.7736 0.820347
\(582\) 0 0
\(583\) 36.4413i 1.50924i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.3332i 1.21071i −0.795955 0.605356i \(-0.793031\pi\)
0.795955 0.605356i \(-0.206969\pi\)
\(588\) 0 0
\(589\) 9.24381i 0.380885i
\(590\) 0 0
\(591\) −15.8484 + 7.36659i −0.651918 + 0.303021i
\(592\) 0 0
\(593\) 24.6525i 1.01236i 0.862428 + 0.506179i \(0.168942\pi\)
−0.862428 + 0.506179i \(0.831058\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 13.8859 + 29.8740i 0.568311 + 1.22266i
\(598\) 0 0
\(599\) −29.8638 −1.22020 −0.610102 0.792323i \(-0.708871\pi\)
−0.610102 + 0.792323i \(0.708871\pi\)
\(600\) 0 0
\(601\) −17.7267 −0.723085 −0.361543 0.932356i \(-0.617750\pi\)
−0.361543 + 0.932356i \(0.617750\pi\)
\(602\) 0 0
\(603\) 16.4480 19.5046i 0.669814 0.794287i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 25.8174i 1.04790i 0.851750 + 0.523949i \(0.175542\pi\)
−0.851750 + 0.523949i \(0.824458\pi\)
\(608\) 0 0
\(609\) 3.47875 + 7.48416i 0.140966 + 0.303274i
\(610\) 0 0
\(611\) 10.3660i 0.419363i
\(612\) 0 0
\(613\) 16.6866i 0.673965i 0.941511 + 0.336982i \(0.109406\pi\)
−0.941511 + 0.336982i \(0.890594\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.69514i 0.350053i 0.984564 + 0.175027i \(0.0560012\pi\)
−0.984564 + 0.175027i \(0.943999\pi\)
\(618\) 0 0
\(619\) −20.3727 −0.818846 −0.409423 0.912345i \(-0.634270\pi\)
−0.409423 + 0.912345i \(0.634270\pi\)
\(620\) 0 0
\(621\) 12.0528 44.3285i 0.483663 1.77884i
\(622\) 0 0
\(623\) 4.59114 0.183940
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3.92467 8.44351i −0.156736 0.337201i
\(628\) 0 0
\(629\) 15.8484 0.631919
\(630\) 0 0
\(631\) 4.51267i 0.179647i 0.995958 + 0.0898233i \(0.0286302\pi\)
−0.995958 + 0.0898233i \(0.971370\pi\)
\(632\) 0 0
\(633\) 8.63135 4.01198i 0.343065 0.159462i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 30.6732i 1.21532i
\(638\) 0 0
\(639\) −13.5529 + 16.0714i −0.536143 + 0.635776i
\(640\) 0 0
\(641\) 25.0424i 0.989114i 0.869145 + 0.494557i \(0.164670\pi\)
−0.869145 + 0.494557i \(0.835330\pi\)
\(642\) 0 0
\(643\) −21.7360 −0.857184 −0.428592 0.903498i \(-0.640990\pi\)
−0.428592 + 0.903498i \(0.640990\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.3476 0.839259 0.419629 0.907695i \(-0.362160\pi\)
0.419629 + 0.907695i \(0.362160\pi\)
\(648\) 0 0
\(649\) −14.8480 −0.582836
\(650\) 0 0
\(651\) −10.2513 + 4.76495i −0.401780 + 0.186753i
\(652\) 0 0
\(653\) 25.9387 1.01506 0.507530 0.861634i \(-0.330559\pi\)
0.507530 + 0.861634i \(0.330559\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −8.88603 + 10.5373i −0.346677 + 0.411101i
\(658\) 0 0
\(659\) 20.6474i 0.804307i 0.915572 + 0.402153i \(0.131738\pi\)
−0.915572 + 0.402153i \(0.868262\pi\)
\(660\) 0 0
\(661\) 9.31999i 0.362506i −0.983437 0.181253i \(-0.941985\pi\)
0.983437 0.181253i \(-0.0580152\pi\)
\(662\) 0 0
\(663\) 21.8101 10.1377i 0.847034 0.393714i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −33.5560 −1.29929
\(668\) 0 0
\(669\) 5.62865 + 12.1094i 0.217616 + 0.468178i
\(670\) 0 0
\(671\) −24.6892 −0.953115
\(672\) 0 0
\(673\) 37.2520 1.43596 0.717980 0.696063i \(-0.245067\pi\)
0.717980 + 0.696063i \(0.245067\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −37.0665 −1.42458 −0.712290 0.701885i \(-0.752342\pi\)
−0.712290 + 0.701885i \(0.752342\pi\)
\(678\) 0 0
\(679\) 17.4214i 0.668571i
\(680\) 0 0
\(681\) −5.40535 11.6290i −0.207133 0.445626i
\(682\) 0 0
\(683\) 26.0898i 0.998297i −0.866516 0.499149i \(-0.833646\pi\)
0.866516 0.499149i \(-0.166354\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −12.5068 26.9071i −0.477165 1.02657i
\(688\) 0 0
\(689\) 68.1598i 2.59668i
\(690\) 0 0
\(691\) −34.8187 −1.32457 −0.662283 0.749254i \(-0.730412\pi\)
−0.662283 + 0.749254i \(0.730412\pi\)
\(692\) 0 0
\(693\) −7.34070 + 8.70484i −0.278850 + 0.330669i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18.5946 0.704323
\(698\) 0 0
\(699\) −1.02799 2.21160i −0.0388820 0.0836505i
\(700\) 0 0
\(701\) 12.7188 0.480383 0.240192 0.970725i \(-0.422790\pi\)
0.240192 + 0.970725i \(0.422790\pi\)
\(702\) 0 0
\(703\) 11.4759i 0.432822i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.4321i 0.655602i
\(708\) 0 0
\(709\) 46.7263i 1.75484i −0.479721 0.877421i \(-0.659262\pi\)
0.479721 0.877421i \(-0.340738\pi\)
\(710\) 0 0
\(711\) 16.8945 + 14.2470i 0.633593 + 0.534303i
\(712\) 0 0
\(713\) 45.9628i 1.72132i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 14.9319 6.94058i 0.557643 0.259201i
\(718\) 0 0
\(719\) 9.50673 0.354541 0.177271 0.984162i \(-0.443273\pi\)
0.177271 + 0.984162i \(0.443273\pi\)
\(720\) 0 0
\(721\) −9.24791 −0.344410
\(722\) 0 0
\(723\) −3.57067 + 1.65970i −0.132795 + 0.0617249i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 31.7629i 1.17802i −0.808125 0.589011i \(-0.799518\pi\)
0.808125 0.589011i \(-0.200482\pi\)
\(728\) 0 0
\(729\) −23.2827 13.6718i −0.862321 0.506362i
\(730\) 0 0
\(731\) 10.7369i 0.397119i
\(732\) 0 0
\(733\) 15.5852i 0.575653i −0.957683 0.287826i \(-0.907067\pi\)
0.957683 0.287826i \(-0.0929326\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.7135i 0.947171i
\(738\) 0 0
\(739\) −4.17997 −0.153763 −0.0768813 0.997040i \(-0.524496\pi\)
−0.0768813 + 0.997040i \(0.524496\pi\)
\(740\) 0 0
\(741\) −7.34070 15.7927i −0.269667 0.580161i
\(742\) 0 0
\(743\) 20.1805 0.740351 0.370176 0.928962i \(-0.379298\pi\)
0.370176 + 0.928962i \(0.379298\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 36.1233 + 30.4624i 1.32168 + 1.11456i
\(748\) 0 0
\(749\) −10.2198 −0.373423
\(750\) 0 0
\(751\) 19.0316i 0.694474i −0.937777 0.347237i \(-0.887120\pi\)
0.937777 0.347237i \(-0.112880\pi\)
\(752\) 0 0
\(753\) 6.93400 + 14.9178i 0.252689 + 0.543633i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 4.22227i 0.153461i 0.997052 + 0.0767305i \(0.0244481\pi\)
−0.997052 + 0.0767305i \(0.975552\pi\)
\(758\) 0 0
\(759\) −19.5145 41.9834i −0.708332 1.52390i
\(760\) 0 0
\(761\) 38.0795i 1.38038i 0.723628 + 0.690190i \(0.242473\pi\)
−0.723628 + 0.690190i \(0.757527\pi\)
\(762\) 0 0
\(763\) 7.09931 0.257012
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −27.7717 −1.00278
\(768\) 0 0
\(769\) 16.9600 0.611595 0.305797 0.952097i \(-0.401077\pi\)
0.305797 + 0.952097i \(0.401077\pi\)
\(770\) 0 0
\(771\) 19.9414 + 42.9018i 0.718172 + 1.54507i
\(772\) 0 0
\(773\) −16.3849 −0.589324 −0.294662 0.955602i \(-0.595207\pi\)
−0.294662 + 0.955602i \(0.595207\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −12.7267 + 5.91554i −0.456566 + 0.212219i
\(778\) 0 0
\(779\) 13.4644i 0.482413i
\(780\) 0 0
\(781\) 21.1875i 0.758150i
\(782\) 0 0
\(783\) −5.17466 + 19.0316i −0.184927 + 0.680135i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −25.6833 −0.915511 −0.457756 0.889078i \(-0.651347\pi\)
−0.457756 + 0.889078i \(0.651347\pi\)
\(788\) 0 0
\(789\) 1.96257 0.912234i 0.0698695 0.0324764i
\(790\) 0 0
\(791\) 14.4223 0.512799
\(792\) 0 0
\(793\) −46.1787 −1.63985
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.7563 −0.487274 −0.243637 0.969866i \(-0.578341\pi\)
−0.243637 + 0.969866i \(0.578341\pi\)
\(798\) 0 0
\(799\) 4.50096i 0.159232i
\(800\) 0 0
\(801\) 8.38731 + 7.07293i 0.296351 + 0.249910i
\(802\) 0 0
\(803\) 13.8918i 0.490229i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 24.6892 11.4759i 0.869100 0.403971i
\(808\) 0 0
\(809\) 6.42314i 0.225826i −0.993605 0.112913i \(-0.963982\pi\)
0.993605 0.112913i \(-0.0360181\pi\)
\(810\) 0 0
\(811\) 40.8353 1.43392 0.716961 0.697114i \(-0.245533\pi\)
0.716961 + 0.697114i \(0.245533\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 7.77462 0.271999
\(818\) 0 0
\(819\) −13.7300 + 16.2815i −0.479767 + 0.568923i
\(820\) 0 0
\(821\) −51.8774 −1.81053 −0.905267 0.424844i \(-0.860329\pi\)
−0.905267 + 0.424844i \(0.860329\pi\)
\(822\) 0 0
\(823\) 36.0379i 1.25620i 0.778131 + 0.628102i \(0.216168\pi\)
−0.778131 + 0.628102i \(0.783832\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.8501i 1.03799i 0.854777 + 0.518995i \(0.173694\pi\)
−0.854777 + 0.518995i \(0.826306\pi\)
\(828\) 0 0
\(829\) 22.2287i 0.772035i −0.922492 0.386017i \(-0.873850\pi\)
0.922492 0.386017i \(-0.126150\pi\)
\(830\) 0 0
\(831\) 0.462534 + 0.995094i 0.0160451 + 0.0345194i
\(832\) 0 0
\(833\) 13.3185i 0.461457i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −26.0682 7.08790i −0.901050 0.244994i
\(838\) 0 0
\(839\) 5.17466 0.178649 0.0893246 0.996003i \(-0.471529\pi\)
0.0893246 + 0.996003i \(0.471529\pi\)
\(840\) 0 0
\(841\) −14.5933 −0.503218
\(842\) 0 0
\(843\) 15.2733 + 32.8590i 0.526042 + 1.13172i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.33334i 0.0801745i
\(848\) 0 0
\(849\) 23.0647 10.7208i 0.791578 0.367937i
\(850\) 0 0
\(851\) 57.0613i 1.95604i
\(852\) 0 0
\(853\) 36.3283i 1.24386i 0.783073 + 0.621929i \(0.213651\pi\)
−0.783073 + 0.621929i \(0.786349\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.42274i 0.321875i 0.986965 + 0.160937i \(0.0514517\pi\)
−0.986965 + 0.160937i \(0.948548\pi\)
\(858\) 0 0
\(859\) −18.0480 −0.615789 −0.307894 0.951421i \(-0.599624\pi\)
−0.307894 + 0.951421i \(0.599624\pi\)
\(860\) 0 0
\(861\) −14.9319 + 6.94058i −0.508879 + 0.236534i
\(862\) 0 0
\(863\) −18.3475 −0.624555 −0.312278 0.949991i \(-0.601092\pi\)
−0.312278 + 0.949991i \(0.601092\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −17.2313 + 8.00937i −0.585206 + 0.272013i
\(868\) 0 0
\(869\) 22.2726 0.755547
\(870\) 0 0
\(871\) 48.0946i 1.62962i
\(872\) 0 0
\(873\) −26.8387 + 31.8262i −0.908352 + 1.07715i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.5736i 0.559651i −0.960051 0.279826i \(-0.909723\pi\)
0.960051 0.279826i \(-0.0902766\pi\)
\(878\) 0 0
\(879\) 8.63728 4.01474i 0.291328 0.135414i
\(880\) 0 0
\(881\) 25.5865i 0.862031i −0.902345 0.431015i \(-0.858155\pi\)
0.902345 0.431015i \(-0.141845\pi\)
\(882\) 0 0
\(883\) 21.2127 0.713863 0.356931 0.934131i \(-0.383823\pi\)
0.356931 + 0.934131i \(0.383823\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.2727 −0.848574 −0.424287 0.905528i \(-0.639475\pi\)
−0.424287 + 0.905528i \(0.639475\pi\)
\(888\) 0 0
\(889\) −27.2520 −0.914004
\(890\) 0 0
\(891\) −26.8206 + 4.59360i −0.898525 + 0.153891i
\(892\) 0 0
\(893\) −3.25915 −0.109063
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −36.5000 78.5258i −1.21870 2.62190i
\(898\) 0 0
\(899\) 19.7333i 0.658142i
\(900\) 0 0
\(901\) 29.5953i 0.985962i
\(902\) 0 0
\(903\) −4.00762 8.62198i −0.133365 0.286921i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −22.7267 −0.754626 −0.377313 0.926086i \(-0.623152\pi\)
−0.377313 + 0.926086i \(0.623152\pi\)
\(908\) 0 0
\(909\) −26.8552 + 31.8458i −0.890731 + 1.05626i
\(910\) 0 0
\(911\) −8.92321 −0.295639 −0.147820 0.989014i \(-0.547226\pi\)
−0.147820 + 0.989014i \(0.547226\pi\)
\(912\) 0 0
\(913\) 47.6226 1.57608
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.7189 0.519084
\(918\) 0 0
\(919\) 33.7531i 1.11341i 0.830710 + 0.556706i \(0.187935\pi\)
−0.830710 + 0.556706i \(0.812065\pi\)
\(920\) 0 0
\(921\) −9.61137 + 4.46751i −0.316705 + 0.147209i
\(922\) 0 0
\(923\) 39.6292i 1.30441i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −16.8945 14.2470i −0.554888 0.467932i
\(928\) 0 0
\(929\) 51.1823i 1.67924i −0.543177 0.839618i \(-0.682779\pi\)
0.543177 0.839618i \(-0.317221\pi\)
\(930\) 0 0
\(931\) −9.64393 −0.316067
\(932\) 0 0
\(933\) −9.04420 + 4.20388i −0.296094 + 0.137629i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 56.9974 1.86202 0.931011 0.364990i \(-0.118928\pi\)
0.931011 + 0.364990i \(0.118928\pi\)
\(938\) 0 0
\(939\) 34.5233 16.0470i 1.12663 0.523672i
\(940\) 0 0
\(941\) −37.1960 −1.21255 −0.606277 0.795253i \(-0.707338\pi\)
−0.606277 + 0.795253i \(0.707338\pi\)
\(942\) 0 0
\(943\) 66.9488i 2.18015i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.5775i 1.18861i −0.804240 0.594305i \(-0.797427\pi\)
0.804240 0.594305i \(-0.202573\pi\)
\(948\) 0 0
\(949\) 25.9831i 0.843449i
\(950\) 0 0
\(951\) −27.7717 + 12.9087i −0.900560 + 0.418594i
\(952\) 0 0
\(953\) 30.3524i 0.983211i −0.870818 0.491606i \(-0.836410\pi\)
0.870818 0.491606i \(-0.163590\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 8.37821 + 18.0248i 0.270829 + 0.582660i
\(958\) 0 0
\(959\) 23.1806 0.748540
\(960\) 0 0
\(961\) 3.97070 0.128087
\(962\) 0 0
\(963\) −18.6700 15.7442i −0.601632 0.507350i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 25.8174i 0.830232i 0.909768 + 0.415116i \(0.136259\pi\)
−0.909768 + 0.415116i \(0.863741\pi\)
\(968\) 0 0
\(969\) −3.18736 6.85728i −0.102393 0.220287i
\(970\) 0 0
\(971\) 22.9904i 0.737796i −0.929470 0.368898i \(-0.879735\pi\)
0.929470 0.368898i \(-0.120265\pi\)
\(972\) 0 0
\(973\) 14.5675i 0.467011i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.2952i 1.16119i 0.814194 + 0.580593i \(0.197179\pi\)
−0.814194 + 0.580593i \(0.802821\pi\)
\(978\) 0 0
\(979\) 11.0573 0.353393
\(980\) 0 0
\(981\) 12.9693 + 10.9369i 0.414079 + 0.349189i
\(982\) 0 0
\(983\) −6.92523 −0.220881 −0.110440 0.993883i \(-0.535226\pi\)
−0.110440 + 0.993883i \(0.535226\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.68001 + 3.61437i 0.0534754 + 0.115047i
\(988\) 0 0
\(989\) 38.6575 1.22924
\(990\) 0 0
\(991\) 42.7182i 1.35699i −0.734605 0.678495i \(-0.762633\pi\)
0.734605 0.678495i \(-0.237367\pi\)
\(992\) 0 0
\(993\) −11.2167 + 5.21367i −0.355950 + 0.165451i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 15.7743i 0.499579i 0.968300 + 0.249789i \(0.0803613\pi\)
−0.968300 + 0.249789i \(0.919639\pi\)
\(998\) 0 0
\(999\) −32.3629 8.79941i −1.02392 0.278401i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.2.b.g.2351.3 12
3.2 odd 2 inner 2400.2.b.g.2351.1 12
4.3 odd 2 600.2.b.h.251.3 yes 12
5.2 odd 4 2400.2.m.e.1199.16 24
5.3 odd 4 2400.2.m.e.1199.9 24
5.4 even 2 2400.2.b.h.2351.10 12
8.3 odd 2 inner 2400.2.b.g.2351.4 12
8.5 even 2 600.2.b.h.251.9 yes 12
12.11 even 2 600.2.b.h.251.10 yes 12
15.2 even 4 2400.2.m.e.1199.12 24
15.8 even 4 2400.2.m.e.1199.13 24
15.14 odd 2 2400.2.b.h.2351.12 12
20.3 even 4 600.2.m.e.299.8 24
20.7 even 4 600.2.m.e.299.17 24
20.19 odd 2 600.2.b.g.251.10 yes 12
24.5 odd 2 600.2.b.h.251.4 yes 12
24.11 even 2 inner 2400.2.b.g.2351.2 12
40.3 even 4 2400.2.m.e.1199.10 24
40.13 odd 4 600.2.m.e.299.6 24
40.19 odd 2 2400.2.b.h.2351.9 12
40.27 even 4 2400.2.m.e.1199.15 24
40.29 even 2 600.2.b.g.251.4 yes 12
40.37 odd 4 600.2.m.e.299.19 24
60.23 odd 4 600.2.m.e.299.18 24
60.47 odd 4 600.2.m.e.299.7 24
60.59 even 2 600.2.b.g.251.3 12
120.29 odd 2 600.2.b.g.251.9 yes 12
120.53 even 4 600.2.m.e.299.20 24
120.59 even 2 2400.2.b.h.2351.11 12
120.77 even 4 600.2.m.e.299.5 24
120.83 odd 4 2400.2.m.e.1199.14 24
120.107 odd 4 2400.2.m.e.1199.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.b.g.251.3 12 60.59 even 2
600.2.b.g.251.4 yes 12 40.29 even 2
600.2.b.g.251.9 yes 12 120.29 odd 2
600.2.b.g.251.10 yes 12 20.19 odd 2
600.2.b.h.251.3 yes 12 4.3 odd 2
600.2.b.h.251.4 yes 12 24.5 odd 2
600.2.b.h.251.9 yes 12 8.5 even 2
600.2.b.h.251.10 yes 12 12.11 even 2
600.2.m.e.299.5 24 120.77 even 4
600.2.m.e.299.6 24 40.13 odd 4
600.2.m.e.299.7 24 60.47 odd 4
600.2.m.e.299.8 24 20.3 even 4
600.2.m.e.299.17 24 20.7 even 4
600.2.m.e.299.18 24 60.23 odd 4
600.2.m.e.299.19 24 40.37 odd 4
600.2.m.e.299.20 24 120.53 even 4
2400.2.b.g.2351.1 12 3.2 odd 2 inner
2400.2.b.g.2351.2 12 24.11 even 2 inner
2400.2.b.g.2351.3 12 1.1 even 1 trivial
2400.2.b.g.2351.4 12 8.3 odd 2 inner
2400.2.b.h.2351.9 12 40.19 odd 2
2400.2.b.h.2351.10 12 5.4 even 2
2400.2.b.h.2351.11 12 120.59 even 2
2400.2.b.h.2351.12 12 15.14 odd 2
2400.2.m.e.1199.9 24 5.3 odd 4
2400.2.m.e.1199.10 24 40.3 even 4
2400.2.m.e.1199.11 24 120.107 odd 4
2400.2.m.e.1199.12 24 15.2 even 4
2400.2.m.e.1199.13 24 15.8 even 4
2400.2.m.e.1199.14 24 120.83 odd 4
2400.2.m.e.1199.15 24 40.27 even 4
2400.2.m.e.1199.16 24 5.2 odd 4