Properties

Label 2400.2.b.g.2351.10
Level $2400$
Weight $2$
Character 2400.2351
Analytic conductor $19.164$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,2,Mod(2351,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.2351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-2,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.537291533250985984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 14x^{8} - 30x^{6} + 56x^{4} - 80x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2351.10
Root \(1.39298 - 0.244153i\) of defining polynomial
Character \(\chi\) \(=\) 2400.2351
Dual form 2400.2.b.g.2351.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.31310 - 1.12950i) q^{3} +4.34495i q^{7} +(0.448458 - 2.96629i) q^{9} -1.83679i q^{11} +0.588129i q^{13} +5.37818i q^{17} +5.38776 q^{19} +(4.90762 + 5.70535i) q^{21} +2.40885 q^{23} +(-2.76156 - 4.40157i) q^{27} -7.98077 q^{29} +7.06575i q^{31} +(-2.07466 - 2.41189i) q^{33} +2.72080i q^{37} +(0.664291 + 0.772271i) q^{39} -3.42496i q^{41} +2.96772 q^{43} +9.81525 q^{47} -11.8786 q^{49} +(6.07466 + 7.06208i) q^{51} +6.65218 q^{53} +(7.07466 - 6.08547i) q^{57} +10.7564i q^{59} +9.27803i q^{61} +(12.8884 + 1.94853i) q^{63} +4.13536 q^{67} +(3.16306 - 2.72080i) q^{69} +12.2241 q^{71} -4.42003 q^{73} +7.98077 q^{77} -12.5870i q^{79} +(-8.59777 - 2.66052i) q^{81} +11.5594i q^{83} +(-10.4795 + 9.01428i) q^{87} +4.21222i q^{89} -2.55539 q^{91} +(7.98077 + 9.27803i) q^{93} -2.16763 q^{97} +(-5.44846 - 0.823724i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} - 2 q^{9} + 4 q^{19} - 8 q^{27} + 18 q^{33} + 40 q^{43} - 36 q^{49} + 30 q^{51} + 42 q^{57} + 60 q^{67} + 12 q^{73} - 10 q^{81} + 24 q^{91} - 32 q^{97} - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.31310 1.12950i 0.758118 0.652117i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.34495i 1.64224i 0.570758 + 0.821118i \(0.306650\pi\)
−0.570758 + 0.821118i \(0.693350\pi\)
\(8\) 0 0
\(9\) 0.448458 2.96629i 0.149486 0.988764i
\(10\) 0 0
\(11\) 1.83679i 0.553813i −0.960897 0.276907i \(-0.910691\pi\)
0.960897 0.276907i \(-0.0893093\pi\)
\(12\) 0 0
\(13\) 0.588129i 0.163118i 0.996669 + 0.0815588i \(0.0259898\pi\)
−0.996669 + 0.0815588i \(0.974010\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.37818i 1.30440i 0.758047 + 0.652200i \(0.226154\pi\)
−0.758047 + 0.652200i \(0.773846\pi\)
\(18\) 0 0
\(19\) 5.38776 1.23604 0.618018 0.786164i \(-0.287936\pi\)
0.618018 + 0.786164i \(0.287936\pi\)
\(20\) 0 0
\(21\) 4.90762 + 5.70535i 1.07093 + 1.24501i
\(22\) 0 0
\(23\) 2.40885 0.502280 0.251140 0.967951i \(-0.419194\pi\)
0.251140 + 0.967951i \(0.419194\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −2.76156 4.40157i −0.531462 0.847082i
\(28\) 0 0
\(29\) −7.98077 −1.48199 −0.740996 0.671510i \(-0.765646\pi\)
−0.740996 + 0.671510i \(0.765646\pi\)
\(30\) 0 0
\(31\) 7.06575i 1.26905i 0.772904 + 0.634523i \(0.218803\pi\)
−0.772904 + 0.634523i \(0.781197\pi\)
\(32\) 0 0
\(33\) −2.07466 2.41189i −0.361151 0.419856i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.72080i 0.447297i 0.974670 + 0.223648i \(0.0717967\pi\)
−0.974670 + 0.223648i \(0.928203\pi\)
\(38\) 0 0
\(39\) 0.664291 + 0.772271i 0.106372 + 0.123662i
\(40\) 0 0
\(41\) 3.42496i 0.534888i −0.963573 0.267444i \(-0.913821\pi\)
0.963573 0.267444i \(-0.0861791\pi\)
\(42\) 0 0
\(43\) 2.96772 0.452574 0.226287 0.974061i \(-0.427341\pi\)
0.226287 + 0.974061i \(0.427341\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.81525 1.43170 0.715850 0.698254i \(-0.246039\pi\)
0.715850 + 0.698254i \(0.246039\pi\)
\(48\) 0 0
\(49\) −11.8786 −1.69694
\(50\) 0 0
\(51\) 6.07466 + 7.06208i 0.850622 + 0.988889i
\(52\) 0 0
\(53\) 6.65218 0.913748 0.456874 0.889531i \(-0.348969\pi\)
0.456874 + 0.889531i \(0.348969\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 7.07466 6.08547i 0.937061 0.806040i
\(58\) 0 0
\(59\) 10.7564i 1.40036i 0.713967 + 0.700179i \(0.246897\pi\)
−0.713967 + 0.700179i \(0.753103\pi\)
\(60\) 0 0
\(61\) 9.27803i 1.18793i 0.804491 + 0.593965i \(0.202438\pi\)
−0.804491 + 0.593965i \(0.797562\pi\)
\(62\) 0 0
\(63\) 12.8884 + 1.94853i 1.62378 + 0.245492i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.13536 0.505215 0.252607 0.967569i \(-0.418712\pi\)
0.252607 + 0.967569i \(0.418712\pi\)
\(68\) 0 0
\(69\) 3.16306 2.72080i 0.380788 0.327546i
\(70\) 0 0
\(71\) 12.2241 1.45073 0.725367 0.688363i \(-0.241670\pi\)
0.725367 + 0.688363i \(0.241670\pi\)
\(72\) 0 0
\(73\) −4.42003 −0.517325 −0.258663 0.965968i \(-0.583282\pi\)
−0.258663 + 0.965968i \(0.583282\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.98077 0.909493
\(78\) 0 0
\(79\) 12.5870i 1.41614i −0.706141 0.708072i \(-0.749565\pi\)
0.706141 0.708072i \(-0.250435\pi\)
\(80\) 0 0
\(81\) −8.59777 2.66052i −0.955308 0.295613i
\(82\) 0 0
\(83\) 11.5594i 1.26881i 0.773002 + 0.634404i \(0.218754\pi\)
−0.773002 + 0.634404i \(0.781246\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −10.4795 + 9.01428i −1.12352 + 0.966432i
\(88\) 0 0
\(89\) 4.21222i 0.446495i 0.974762 + 0.223247i \(0.0716658\pi\)
−0.974762 + 0.223247i \(0.928334\pi\)
\(90\) 0 0
\(91\) −2.55539 −0.267878
\(92\) 0 0
\(93\) 7.98077 + 9.27803i 0.827567 + 0.962087i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.16763 −0.220090 −0.110045 0.993927i \(-0.535099\pi\)
−0.110045 + 0.993927i \(0.535099\pi\)
\(98\) 0 0
\(99\) −5.44846 0.823724i −0.547591 0.0827874i
\(100\) 0 0
\(101\) −3.16306 −0.314736 −0.157368 0.987540i \(-0.550301\pi\)
−0.157368 + 0.987540i \(0.550301\pi\)
\(102\) 0 0
\(103\) 12.5870i 1.24023i 0.784511 + 0.620115i \(0.212914\pi\)
−0.784511 + 0.620115i \(0.787086\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.79002i 0.366395i −0.983076 0.183197i \(-0.941355\pi\)
0.983076 0.183197i \(-0.0586447\pi\)
\(108\) 0 0
\(109\) 0.588129i 0.0563325i −0.999603 0.0281663i \(-0.991033\pi\)
0.999603 0.0281663i \(-0.00896678\pi\)
\(110\) 0 0
\(111\) 3.07314 + 3.57268i 0.291690 + 0.339104i
\(112\) 0 0
\(113\) 11.0621i 1.04064i −0.853972 0.520319i \(-0.825813\pi\)
0.853972 0.520319i \(-0.174187\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.74456 + 0.263751i 0.161285 + 0.0243838i
\(118\) 0 0
\(119\) −23.3679 −2.14213
\(120\) 0 0
\(121\) 7.62620 0.693291
\(122\) 0 0
\(123\) −3.86849 4.49731i −0.348810 0.405508i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.9552i 1.14959i −0.818297 0.574796i \(-0.805081\pi\)
0.818297 0.574796i \(-0.194919\pi\)
\(128\) 0 0
\(129\) 3.89692 3.35205i 0.343104 0.295131i
\(130\) 0 0
\(131\) 2.98699i 0.260974i −0.991450 0.130487i \(-0.958346\pi\)
0.991450 0.130487i \(-0.0416541\pi\)
\(132\) 0 0
\(133\) 23.4095i 2.02986i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.66820i 0.484267i −0.970243 0.242133i \(-0.922153\pi\)
0.970243 0.242133i \(-0.0778471\pi\)
\(138\) 0 0
\(139\) 2.69075 0.228226 0.114113 0.993468i \(-0.463597\pi\)
0.114113 + 0.993468i \(0.463597\pi\)
\(140\) 0 0
\(141\) 12.8884 11.0863i 1.08540 0.933637i
\(142\) 0 0
\(143\) 1.08027 0.0903367
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −15.5978 + 13.4169i −1.28648 + 1.10661i
\(148\) 0 0
\(149\) −20.9591 −1.71703 −0.858517 0.512785i \(-0.828614\pi\)
−0.858517 + 0.512785i \(0.828614\pi\)
\(150\) 0 0
\(151\) 3.16869i 0.257865i −0.991653 0.128932i \(-0.958845\pi\)
0.991653 0.128932i \(-0.0411550\pi\)
\(152\) 0 0
\(153\) 15.9533 + 2.41189i 1.28974 + 0.194990i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 11.9988i 0.957611i 0.877921 + 0.478805i \(0.158930\pi\)
−0.877921 + 0.478805i \(0.841070\pi\)
\(158\) 0 0
\(159\) 8.73498 7.51364i 0.692729 0.595871i
\(160\) 0 0
\(161\) 10.4663i 0.824864i
\(162\) 0 0
\(163\) 13.1816 1.03246 0.516231 0.856449i \(-0.327335\pi\)
0.516231 + 0.856449i \(0.327335\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.73744 0.289211 0.144606 0.989489i \(-0.453809\pi\)
0.144606 + 0.989489i \(0.453809\pi\)
\(168\) 0 0
\(169\) 12.6541 0.973393
\(170\) 0 0
\(171\) 2.41618 15.9817i 0.184770 1.22215i
\(172\) 0 0
\(173\) 6.65218 0.505756 0.252878 0.967498i \(-0.418623\pi\)
0.252878 + 0.967498i \(0.418623\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.1493 + 14.1242i 0.913198 + 1.06164i
\(178\) 0 0
\(179\) 18.4093i 1.37598i −0.725722 0.687988i \(-0.758494\pi\)
0.725722 0.687988i \(-0.241506\pi\)
\(180\) 0 0
\(181\) 19.5125i 1.45035i −0.688564 0.725175i \(-0.741759\pi\)
0.688564 0.725175i \(-0.258241\pi\)
\(182\) 0 0
\(183\) 10.4795 + 12.1830i 0.774670 + 0.900591i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.87859 0.722394
\(188\) 0 0
\(189\) 19.1246 11.9988i 1.39111 0.872786i
\(190\) 0 0
\(191\) −8.73498 −0.632041 −0.316020 0.948752i \(-0.602347\pi\)
−0.316020 + 0.948752i \(0.602347\pi\)
\(192\) 0 0
\(193\) 1.47689 0.106309 0.0531543 0.998586i \(-0.483072\pi\)
0.0531543 + 0.998586i \(0.483072\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.1438 0.793965 0.396982 0.917826i \(-0.370057\pi\)
0.396982 + 0.917826i \(0.370057\pi\)
\(198\) 0 0
\(199\) 2.80041i 0.198516i 0.995062 + 0.0992578i \(0.0316469\pi\)
−0.995062 + 0.0992578i \(0.968353\pi\)
\(200\) 0 0
\(201\) 5.43014 4.67089i 0.383012 0.329459i
\(202\) 0 0
\(203\) 34.6760i 2.43378i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.08027 7.14536i 0.0750839 0.496637i
\(208\) 0 0
\(209\) 9.89618i 0.684533i
\(210\) 0 0
\(211\) −9.86464 −0.679110 −0.339555 0.940586i \(-0.610276\pi\)
−0.339555 + 0.940586i \(0.610276\pi\)
\(212\) 0 0
\(213\) 16.0515 13.8071i 1.09983 0.946048i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −30.7003 −2.08407
\(218\) 0 0
\(219\) −5.80394 + 4.99243i −0.392194 + 0.337357i
\(220\) 0 0
\(221\) −3.16306 −0.212771
\(222\) 0 0
\(223\) 1.62415i 0.108761i 0.998520 + 0.0543806i \(0.0173184\pi\)
−0.998520 + 0.0543806i \(0.982682\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.94021i 0.327893i −0.986469 0.163947i \(-0.947578\pi\)
0.986469 0.163947i \(-0.0524225\pi\)
\(228\) 0 0
\(229\) 15.2471i 1.00756i −0.863832 0.503779i \(-0.831942\pi\)
0.863832 0.503779i \(-0.168058\pi\)
\(230\) 0 0
\(231\) 10.4795 9.01428i 0.689503 0.593096i
\(232\) 0 0
\(233\) 22.3000i 1.46092i 0.682955 + 0.730460i \(0.260694\pi\)
−0.682955 + 0.730460i \(0.739306\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −14.2170 16.5279i −0.923492 1.07360i
\(238\) 0 0
\(239\) −14.8813 −0.962589 −0.481294 0.876559i \(-0.659833\pi\)
−0.481294 + 0.876559i \(0.659833\pi\)
\(240\) 0 0
\(241\) −0.523114 −0.0336968 −0.0168484 0.999858i \(-0.505363\pi\)
−0.0168484 + 0.999858i \(0.505363\pi\)
\(242\) 0 0
\(243\) −14.2948 + 6.21766i −0.917010 + 0.398863i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.16869i 0.201619i
\(248\) 0 0
\(249\) 13.0563 + 15.1786i 0.827412 + 0.961906i
\(250\) 0 0
\(251\) 4.82378i 0.304474i 0.988344 + 0.152237i \(0.0486477\pi\)
−0.988344 + 0.152237i \(0.951352\pi\)
\(252\) 0 0
\(253\) 4.42456i 0.278170i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.8859i 1.42758i −0.700358 0.713792i \(-0.746976\pi\)
0.700358 0.713792i \(-0.253024\pi\)
\(258\) 0 0
\(259\) −11.8217 −0.734567
\(260\) 0 0
\(261\) −3.57904 + 23.6733i −0.221537 + 1.46534i
\(262\) 0 0
\(263\) −13.5527 −0.835694 −0.417847 0.908517i \(-0.637215\pi\)
−0.417847 + 0.908517i \(0.637215\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4.75771 + 5.53107i 0.291167 + 0.338496i
\(268\) 0 0
\(269\) −12.9783 −0.791301 −0.395651 0.918401i \(-0.629481\pi\)
−0.395651 + 0.918401i \(0.629481\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) −3.35548 + 2.88631i −0.203083 + 0.174688i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 16.7917i 1.00891i −0.863437 0.504457i \(-0.831693\pi\)
0.863437 0.504457i \(-0.168307\pi\)
\(278\) 0 0
\(279\) 20.9591 + 3.16869i 1.25479 + 0.189705i
\(280\) 0 0
\(281\) 11.0464i 0.658972i 0.944161 + 0.329486i \(0.106875\pi\)
−0.944161 + 0.329486i \(0.893125\pi\)
\(282\) 0 0
\(283\) −18.7047 −1.11188 −0.555940 0.831223i \(-0.687641\pi\)
−0.555940 + 0.831223i \(0.687641\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.8813 0.878413
\(288\) 0 0
\(289\) −11.9248 −0.701460
\(290\) 0 0
\(291\) −2.84632 + 2.44834i −0.166854 + 0.143524i
\(292\) 0 0
\(293\) −29.4457 −1.72024 −0.860119 0.510093i \(-0.829611\pi\)
−0.860119 + 0.510093i \(0.829611\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −8.08476 + 5.07240i −0.469125 + 0.294331i
\(298\) 0 0
\(299\) 1.41672i 0.0819308i
\(300\) 0 0
\(301\) 12.8946i 0.743233i
\(302\) 0 0
\(303\) −4.15341 + 3.57268i −0.238607 + 0.205245i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 33.2095 1.89537 0.947683 0.319213i \(-0.103419\pi\)
0.947683 + 0.319213i \(0.103419\pi\)
\(308\) 0 0
\(309\) 14.2170 + 16.5279i 0.808775 + 0.940241i
\(310\) 0 0
\(311\) −25.7768 −1.46167 −0.730834 0.682556i \(-0.760868\pi\)
−0.730834 + 0.682556i \(0.760868\pi\)
\(312\) 0 0
\(313\) 9.65410 0.545682 0.272841 0.962059i \(-0.412037\pi\)
0.272841 + 0.962059i \(0.412037\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.81770 −0.270589 −0.135295 0.990805i \(-0.543198\pi\)
−0.135295 + 0.990805i \(0.543198\pi\)
\(318\) 0 0
\(319\) 14.6590i 0.820747i
\(320\) 0 0
\(321\) −4.28082 4.97667i −0.238932 0.277770i
\(322\) 0 0
\(323\) 28.9763i 1.61229i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −0.664291 0.772271i −0.0367354 0.0427067i
\(328\) 0 0
\(329\) 42.6468i 2.35119i
\(330\) 0 0
\(331\) 1.37380 0.0755110 0.0377555 0.999287i \(-0.487979\pi\)
0.0377555 + 0.999287i \(0.487979\pi\)
\(332\) 0 0
\(333\) 8.07068 + 1.22016i 0.442271 + 0.0668646i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 13.0925 0.713192 0.356596 0.934259i \(-0.383937\pi\)
0.356596 + 0.934259i \(0.383937\pi\)
\(338\) 0 0
\(339\) −12.4947 14.5257i −0.678618 0.788927i
\(340\) 0 0
\(341\) 12.9783 0.702815
\(342\) 0 0
\(343\) 21.1972i 1.14454i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.97936i 0.213623i −0.994279 0.106812i \(-0.965936\pi\)
0.994279 0.106812i \(-0.0340642\pi\)
\(348\) 0 0
\(349\) 12.5870i 0.673764i 0.941547 + 0.336882i \(0.109372\pi\)
−0.941547 + 0.336882i \(0.890628\pi\)
\(350\) 0 0
\(351\) 2.58869 1.62415i 0.138174 0.0866908i
\(352\) 0 0
\(353\) 0.787269i 0.0419021i −0.999781 0.0209510i \(-0.993331\pi\)
0.999781 0.0209510i \(-0.00666941\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −30.6844 + 26.3941i −1.62399 + 1.39692i
\(358\) 0 0
\(359\) 1.08027 0.0570144 0.0285072 0.999594i \(-0.490925\pi\)
0.0285072 + 0.999594i \(0.490925\pi\)
\(360\) 0 0
\(361\) 10.0279 0.527785
\(362\) 0 0
\(363\) 10.0140 8.61379i 0.525596 0.452107i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 14.5794i 0.761038i 0.924773 + 0.380519i \(0.124255\pi\)
−0.924773 + 0.380519i \(0.875745\pi\)
\(368\) 0 0
\(369\) −10.1594 1.53595i −0.528878 0.0799583i
\(370\) 0 0
\(371\) 28.9034i 1.50059i
\(372\) 0 0
\(373\) 31.5719i 1.63473i −0.576118 0.817366i \(-0.695433\pi\)
0.576118 0.817366i \(-0.304567\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.69372i 0.241739i
\(378\) 0 0
\(379\) −4.61224 −0.236915 −0.118458 0.992959i \(-0.537795\pi\)
−0.118458 + 0.992959i \(0.537795\pi\)
\(380\) 0 0
\(381\) −14.6330 17.0115i −0.749669 0.871526i
\(382\) 0 0
\(383\) −14.6330 −0.747709 −0.373854 0.927487i \(-0.621964\pi\)
−0.373854 + 0.927487i \(0.621964\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.33090 8.80314i 0.0676535 0.447489i
\(388\) 0 0
\(389\) 15.1388 0.767570 0.383785 0.923422i \(-0.374620\pi\)
0.383785 + 0.923422i \(0.374620\pi\)
\(390\) 0 0
\(391\) 12.9552i 0.655175i
\(392\) 0 0
\(393\) −3.37380 3.92221i −0.170186 0.197849i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.3362i 0.920268i 0.887849 + 0.460134i \(0.152199\pi\)
−0.887849 + 0.460134i \(0.847801\pi\)
\(398\) 0 0
\(399\) 26.4411 + 30.7390i 1.32371 + 1.53888i
\(400\) 0 0
\(401\) 34.2381i 1.70977i −0.518820 0.854884i \(-0.673628\pi\)
0.518820 0.854884i \(-0.326372\pi\)
\(402\) 0 0
\(403\) −4.15557 −0.207004
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.99754 0.247719
\(408\) 0 0
\(409\) 18.6926 0.924291 0.462146 0.886804i \(-0.347080\pi\)
0.462146 + 0.886804i \(0.347080\pi\)
\(410\) 0 0
\(411\) −6.40223 7.44290i −0.315799 0.367131i
\(412\) 0 0
\(413\) −46.7359 −2.29972
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.53322 3.03920i 0.173023 0.148830i
\(418\) 0 0
\(419\) 5.24599i 0.256283i 0.991756 + 0.128142i \(0.0409012\pi\)
−0.991756 + 0.128142i \(0.959099\pi\)
\(420\) 0 0
\(421\) 4.42456i 0.215640i −0.994170 0.107820i \(-0.965613\pi\)
0.994170 0.107820i \(-0.0343870\pi\)
\(422\) 0 0
\(423\) 4.40173 29.1149i 0.214019 1.41561i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −40.3126 −1.95086
\(428\) 0 0
\(429\) 1.41850 1.22016i 0.0684859 0.0589101i
\(430\) 0 0
\(431\) −5.89797 −0.284095 −0.142048 0.989860i \(-0.545369\pi\)
−0.142048 + 0.989860i \(0.545369\pi\)
\(432\) 0 0
\(433\) −32.2158 −1.54819 −0.774095 0.633069i \(-0.781795\pi\)
−0.774095 + 0.633069i \(0.781795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.9783 0.620837
\(438\) 0 0
\(439\) 2.27291i 0.108480i 0.998528 + 0.0542399i \(0.0172736\pi\)
−0.998528 + 0.0542399i \(0.982726\pi\)
\(440\) 0 0
\(441\) −5.32705 + 35.2354i −0.253669 + 1.67787i
\(442\) 0 0
\(443\) 4.59091i 0.218121i 0.994035 + 0.109060i \(0.0347842\pi\)
−0.994035 + 0.109060i \(0.965216\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −27.5213 + 23.6733i −1.30171 + 1.11971i
\(448\) 0 0
\(449\) 39.0461i 1.84270i −0.388736 0.921349i \(-0.627088\pi\)
0.388736 0.921349i \(-0.372912\pi\)
\(450\) 0 0
\(451\) −6.29093 −0.296228
\(452\) 0 0
\(453\) −3.57904 4.16081i −0.168158 0.195492i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.96147 0.232088 0.116044 0.993244i \(-0.462979\pi\)
0.116044 + 0.993244i \(0.462979\pi\)
\(458\) 0 0
\(459\) 23.6724 14.8522i 1.10493 0.693239i
\(460\) 0 0
\(461\) −14.1271 −0.657963 −0.328981 0.944336i \(-0.606705\pi\)
−0.328981 + 0.944336i \(0.606705\pi\)
\(462\) 0 0
\(463\) 14.2907i 0.664146i −0.943254 0.332073i \(-0.892252\pi\)
0.943254 0.332073i \(-0.107748\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 31.8469i 1.47370i 0.676058 + 0.736849i \(0.263687\pi\)
−0.676058 + 0.736849i \(0.736313\pi\)
\(468\) 0 0
\(469\) 17.9679i 0.829682i
\(470\) 0 0
\(471\) 13.5527 + 15.7557i 0.624475 + 0.725982i
\(472\) 0 0
\(473\) 5.45109i 0.250641i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.98323 19.7323i 0.136593 0.903481i
\(478\) 0 0
\(479\) −25.9566 −1.18599 −0.592994 0.805207i \(-0.702054\pi\)
−0.592994 + 0.805207i \(0.702054\pi\)
\(480\) 0 0
\(481\) −1.60018 −0.0729619
\(482\) 0 0
\(483\) 11.8217 + 13.7433i 0.537908 + 0.625344i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 24.4456i 1.10773i −0.832605 0.553867i \(-0.813152\pi\)
0.832605 0.553867i \(-0.186848\pi\)
\(488\) 0 0
\(489\) 17.3087 14.8886i 0.782728 0.673286i
\(490\) 0 0
\(491\) 37.6630i 1.69971i −0.527018 0.849854i \(-0.676690\pi\)
0.527018 0.849854i \(-0.323310\pi\)
\(492\) 0 0
\(493\) 42.9220i 1.93311i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 53.1131i 2.38245i
\(498\) 0 0
\(499\) 36.7249 1.64403 0.822016 0.569464i \(-0.192849\pi\)
0.822016 + 0.569464i \(0.192849\pi\)
\(500\) 0 0
\(501\) 4.90762 4.22143i 0.219256 0.188600i
\(502\) 0 0
\(503\) −29.5142 −1.31597 −0.657987 0.753029i \(-0.728592\pi\)
−0.657987 + 0.753029i \(0.728592\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 16.6161 14.2928i 0.737947 0.634766i
\(508\) 0 0
\(509\) 2.16054 0.0957642 0.0478821 0.998853i \(-0.484753\pi\)
0.0478821 + 0.998853i \(0.484753\pi\)
\(510\) 0 0
\(511\) 19.2048i 0.849571i
\(512\) 0 0
\(513\) −14.8786 23.7146i −0.656906 1.04702i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 18.0286i 0.792895i
\(518\) 0 0
\(519\) 8.73498 7.51364i 0.383423 0.329812i
\(520\) 0 0
\(521\) 9.39893i 0.411775i 0.978576 + 0.205887i \(0.0660080\pi\)
−0.978576 + 0.205887i \(0.933992\pi\)
\(522\) 0 0
\(523\) 9.68638 0.423556 0.211778 0.977318i \(-0.432075\pi\)
0.211778 + 0.977318i \(0.432075\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −38.0009 −1.65534
\(528\) 0 0
\(529\) −17.1974 −0.747714
\(530\) 0 0
\(531\) 31.9065 + 4.82378i 1.38462 + 0.209334i
\(532\) 0 0
\(533\) 2.01431 0.0872497
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −20.7933 24.1732i −0.897298 1.04315i
\(538\) 0 0
\(539\) 21.8185i 0.939789i
\(540\) 0 0
\(541\) 13.1751i 0.566441i 0.959055 + 0.283221i \(0.0914029\pi\)
−0.959055 + 0.283221i \(0.908597\pi\)
\(542\) 0 0
\(543\) −22.0393 25.6218i −0.945799 1.09954i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −28.4113 −1.21478 −0.607390 0.794404i \(-0.707783\pi\)
−0.607390 + 0.794404i \(0.707783\pi\)
\(548\) 0 0
\(549\) 27.5213 + 4.16081i 1.17458 + 0.177579i
\(550\) 0 0
\(551\) −42.9984 −1.83179
\(552\) 0 0
\(553\) 54.6897 2.32564
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 32.1029 1.36024 0.680122 0.733099i \(-0.261927\pi\)
0.680122 + 0.733099i \(0.261927\pi\)
\(558\) 0 0
\(559\) 1.74540i 0.0738227i
\(560\) 0 0
\(561\) 12.9716 11.1579i 0.547660 0.471086i
\(562\) 0 0
\(563\) 14.2406i 0.600170i −0.953913 0.300085i \(-0.902985\pi\)
0.953913 0.300085i \(-0.0970150\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 11.5598 37.3569i 0.485466 1.56884i
\(568\) 0 0
\(569\) 9.08328i 0.380791i −0.981707 0.190396i \(-0.939023\pi\)
0.981707 0.190396i \(-0.0609770\pi\)
\(570\) 0 0
\(571\) 15.7432 0.658834 0.329417 0.944185i \(-0.393148\pi\)
0.329417 + 0.944185i \(0.393148\pi\)
\(572\) 0 0
\(573\) −11.4699 + 9.86616i −0.479161 + 0.412165i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 33.1974 1.38203 0.691014 0.722842i \(-0.257164\pi\)
0.691014 + 0.722842i \(0.257164\pi\)
\(578\) 0 0
\(579\) 1.93930 1.66814i 0.0805944 0.0693256i
\(580\) 0 0
\(581\) −50.2250 −2.08368
\(582\) 0 0
\(583\) 12.2187i 0.506046i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.613686i 0.0253295i −0.999920 0.0126648i \(-0.995969\pi\)
0.999920 0.0126648i \(-0.00403143\pi\)
\(588\) 0 0
\(589\) 38.0685i 1.56859i
\(590\) 0 0
\(591\) 14.6330 12.5870i 0.601919 0.517758i
\(592\) 0 0
\(593\) 15.5545i 0.638747i 0.947629 + 0.319374i \(0.103472\pi\)
−0.947629 + 0.319374i \(0.896528\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.16306 + 3.67721i 0.129456 + 0.150498i
\(598\) 0 0
\(599\) 39.0811 1.59681 0.798406 0.602119i \(-0.205677\pi\)
0.798406 + 0.602119i \(0.205677\pi\)
\(600\) 0 0
\(601\) −20.5231 −0.837155 −0.418578 0.908181i \(-0.637471\pi\)
−0.418578 + 0.908181i \(0.637471\pi\)
\(602\) 0 0
\(603\) 1.85454 12.2667i 0.0755225 0.499538i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 10.8832i 0.441735i 0.975304 + 0.220868i \(0.0708889\pi\)
−0.975304 + 0.220868i \(0.929111\pi\)
\(608\) 0 0
\(609\) −39.1666 45.5331i −1.58711 1.84509i
\(610\) 0 0
\(611\) 5.77263i 0.233535i
\(612\) 0 0
\(613\) 30.3350i 1.22522i 0.790385 + 0.612610i \(0.209881\pi\)
−0.790385 + 0.612610i \(0.790119\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.71447i 0.350831i −0.984494 0.175416i \(-0.943873\pi\)
0.984494 0.175416i \(-0.0561269\pi\)
\(618\) 0 0
\(619\) −13.0323 −0.523811 −0.261906 0.965093i \(-0.584351\pi\)
−0.261906 + 0.965093i \(0.584351\pi\)
\(620\) 0 0
\(621\) −6.65218 10.6027i −0.266943 0.425473i
\(622\) 0 0
\(623\) −18.3019 −0.733250
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −11.1777 12.9947i −0.446396 0.518957i
\(628\) 0 0
\(629\) −14.6330 −0.583454
\(630\) 0 0
\(631\) 14.8599i 0.591562i −0.955256 0.295781i \(-0.904420\pi\)
0.955256 0.295781i \(-0.0955798\pi\)
\(632\) 0 0
\(633\) −12.9533 + 11.1421i −0.514845 + 0.442859i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.98614i 0.276801i
\(638\) 0 0
\(639\) 5.48200 36.2602i 0.216864 1.43443i
\(640\) 0 0
\(641\) 5.97397i 0.235958i −0.993016 0.117979i \(-0.962358\pi\)
0.993016 0.117979i \(-0.0376415\pi\)
\(642\) 0 0
\(643\) −15.7938 −0.622848 −0.311424 0.950271i \(-0.600806\pi\)
−0.311424 + 0.950271i \(0.600806\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.8128 0.582351 0.291175 0.956670i \(-0.405954\pi\)
0.291175 + 0.956670i \(0.405954\pi\)
\(648\) 0 0
\(649\) 19.7572 0.775537
\(650\) 0 0
\(651\) −40.3126 + 34.6760i −1.57997 + 1.35906i
\(652\) 0 0
\(653\) −3.48912 −0.136540 −0.0682699 0.997667i \(-0.521748\pi\)
−0.0682699 + 0.997667i \(0.521748\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.98220 + 13.1111i −0.0773329 + 0.511513i
\(658\) 0 0
\(659\) 36.5563i 1.42403i 0.702163 + 0.712017i \(0.252218\pi\)
−0.702163 + 0.712017i \(0.747782\pi\)
\(660\) 0 0
\(661\) 42.9220i 1.66947i −0.550650 0.834736i \(-0.685620\pi\)
0.550650 0.834736i \(-0.314380\pi\)
\(662\) 0 0
\(663\) −4.15341 + 3.57268i −0.161305 + 0.138751i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −19.2245 −0.744375
\(668\) 0 0
\(669\) 1.83448 + 2.13267i 0.0709251 + 0.0824538i
\(670\) 0 0
\(671\) 17.0418 0.657892
\(672\) 0 0
\(673\) −46.2899 −1.78434 −0.892172 0.451696i \(-0.850819\pi\)
−0.892172 + 0.451696i \(0.850819\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.7911 −1.06810 −0.534049 0.845453i \(-0.679330\pi\)
−0.534049 + 0.845453i \(0.679330\pi\)
\(678\) 0 0
\(679\) 9.41826i 0.361440i
\(680\) 0 0
\(681\) −5.57997 6.48699i −0.213825 0.248582i
\(682\) 0 0
\(683\) 33.6521i 1.28766i 0.765167 + 0.643832i \(0.222656\pi\)
−0.765167 + 0.643832i \(0.777344\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −17.2216 20.0210i −0.657047 0.763849i
\(688\) 0 0
\(689\) 3.91234i 0.149048i
\(690\) 0 0
\(691\) 22.6820 0.862864 0.431432 0.902145i \(-0.358008\pi\)
0.431432 + 0.902145i \(0.358008\pi\)
\(692\) 0 0
\(693\) 3.57904 23.6733i 0.135956 0.899274i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18.4200 0.697708
\(698\) 0 0
\(699\) 25.1878 + 29.2821i 0.952692 + 1.10755i
\(700\) 0 0
\(701\) 10.6379 0.401789 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(702\) 0 0
\(703\) 14.6590i 0.552875i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.7433i 0.516872i
\(708\) 0 0
\(709\) 20.5295i 0.771002i −0.922707 0.385501i \(-0.874029\pi\)
0.922707 0.385501i \(-0.125971\pi\)
\(710\) 0 0
\(711\) −37.3366 5.64472i −1.40023 0.211694i
\(712\) 0 0
\(713\) 17.0203i 0.637417i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −19.5406 + 16.8084i −0.729756 + 0.627721i
\(718\) 0 0
\(719\) 14.8813 0.554977 0.277489 0.960729i \(-0.410498\pi\)
0.277489 + 0.960729i \(0.410498\pi\)
\(720\) 0 0
\(721\) −54.6897 −2.03675
\(722\) 0 0
\(723\) −0.686901 + 0.590858i −0.0255461 + 0.0219742i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16.1239i 0.598004i −0.954253 0.299002i \(-0.903346\pi\)
0.954253 0.299002i \(-0.0966537\pi\)
\(728\) 0 0
\(729\) −11.7476 + 24.3104i −0.435096 + 0.900384i
\(730\) 0 0
\(731\) 15.9610i 0.590337i
\(732\) 0 0
\(733\) 16.7310i 0.617975i 0.951066 + 0.308988i \(0.0999902\pi\)
−0.951066 + 0.308988i \(0.900010\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.59579i 0.279795i
\(738\) 0 0
\(739\) −12.5693 −0.462371 −0.231185 0.972910i \(-0.574260\pi\)
−0.231185 + 0.972910i \(0.574260\pi\)
\(740\) 0 0
\(741\) 3.57904 + 4.16081i 0.131479 + 0.152851i
\(742\) 0 0
\(743\) 22.2877 0.817655 0.408827 0.912612i \(-0.365938\pi\)
0.408827 + 0.912612i \(0.365938\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 34.2885 + 5.18390i 1.25455 + 0.189669i
\(748\) 0 0
\(749\) 16.4674 0.601707
\(750\) 0 0
\(751\) 35.1279i 1.28183i −0.767610 0.640917i \(-0.778554\pi\)
0.767610 0.640917i \(-0.221446\pi\)
\(752\) 0 0
\(753\) 5.44846 + 6.33410i 0.198553 + 0.230827i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 20.6887i 0.751945i −0.926631 0.375972i \(-0.877309\pi\)
0.926631 0.375972i \(-0.122691\pi\)
\(758\) 0 0
\(759\) −4.99754 5.80988i −0.181399 0.210885i
\(760\) 0 0
\(761\) 22.8130i 0.826971i 0.910511 + 0.413485i \(0.135689\pi\)
−0.910511 + 0.413485i \(0.864311\pi\)
\(762\) 0 0
\(763\) 2.55539 0.0925113
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.32612 −0.228423
\(768\) 0 0
\(769\) −46.3082 −1.66992 −0.834958 0.550313i \(-0.814508\pi\)
−0.834958 + 0.550313i \(0.814508\pi\)
\(770\) 0 0
\(771\) −25.8496 30.0515i −0.930952 1.08228i
\(772\) 0 0
\(773\) −30.2684 −1.08868 −0.544340 0.838865i \(-0.683220\pi\)
−0.544340 + 0.838865i \(0.683220\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −15.5231 + 13.3527i −0.556889 + 0.479024i
\(778\) 0 0
\(779\) 18.4528i 0.661141i
\(780\) 0 0
\(781\) 22.4531i 0.803436i
\(782\) 0 0
\(783\) 22.0393 + 35.1279i 0.787622 + 1.25537i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 19.4080 0.691819 0.345910 0.938268i \(-0.387570\pi\)
0.345910 + 0.938268i \(0.387570\pi\)
\(788\) 0 0
\(789\) −17.7960 + 15.3078i −0.633555 + 0.544971i
\(790\) 0 0
\(791\) 48.0644 1.70897
\(792\) 0 0
\(793\) −5.45667 −0.193772
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −30.7743 −1.09008 −0.545041 0.838409i \(-0.683486\pi\)
−0.545041 + 0.838409i \(0.683486\pi\)
\(798\) 0 0
\(799\) 52.7882i 1.86751i
\(800\) 0 0
\(801\) 12.4947 + 1.88901i 0.441478 + 0.0667448i
\(802\) 0 0
\(803\) 8.11867i 0.286502i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −17.0418 + 14.6590i −0.599900 + 0.516021i
\(808\) 0 0
\(809\) 37.5744i 1.32104i 0.750807 + 0.660522i \(0.229665\pi\)
−0.750807 + 0.660522i \(0.770335\pi\)
\(810\) 0 0
\(811\) 30.3492 1.06571 0.532853 0.846208i \(-0.321120\pi\)
0.532853 + 0.846208i \(0.321120\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 15.9894 0.559397
\(818\) 0 0
\(819\) −1.14599 + 7.58003i −0.0400440 + 0.264868i
\(820\) 0 0
\(821\) 6.97824 0.243542 0.121771 0.992558i \(-0.461143\pi\)
0.121771 + 0.992558i \(0.461143\pi\)
\(822\) 0 0
\(823\) 0.569147i 0.0198392i 0.999951 + 0.00991960i \(0.00315756\pi\)
−0.999951 + 0.00991960i \(0.996842\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23.0851i 0.802748i −0.915914 0.401374i \(-0.868533\pi\)
0.915914 0.401374i \(-0.131467\pi\)
\(828\) 0 0
\(829\) 48.3636i 1.67974i −0.542790 0.839869i \(-0.682632\pi\)
0.542790 0.839869i \(-0.317368\pi\)
\(830\) 0 0
\(831\) −18.9662 22.0491i −0.657930 0.764876i
\(832\) 0 0
\(833\) 63.8852i 2.21349i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 31.1004 19.5125i 1.07499 0.674450i
\(838\) 0 0
\(839\) −22.0393 −0.760883 −0.380441 0.924805i \(-0.624228\pi\)
−0.380441 + 0.924805i \(0.624228\pi\)
\(840\) 0 0
\(841\) 34.6926 1.19630
\(842\) 0 0
\(843\) 12.4769 + 14.5050i 0.429727 + 0.499578i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 33.1355i 1.13855i
\(848\) 0 0
\(849\) −24.5611 + 21.1270i −0.842936 + 0.725076i
\(850\) 0 0
\(851\) 6.55400i 0.224668i
\(852\) 0 0
\(853\) 6.39801i 0.219064i 0.993983 + 0.109532i \(0.0349352\pi\)
−0.993983 + 0.109532i \(0.965065\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.2124i 0.929559i −0.885426 0.464780i \(-0.846134\pi\)
0.885426 0.464780i \(-0.153866\pi\)
\(858\) 0 0
\(859\) −23.4663 −0.800658 −0.400329 0.916371i \(-0.631104\pi\)
−0.400329 + 0.916371i \(0.631104\pi\)
\(860\) 0 0
\(861\) 19.5406 16.8084i 0.665941 0.572828i
\(862\) 0 0
\(863\) −12.4724 −0.424566 −0.212283 0.977208i \(-0.568090\pi\)
−0.212283 + 0.977208i \(0.568090\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −15.6585 + 13.4691i −0.531790 + 0.457434i
\(868\) 0 0
\(869\) −23.1196 −0.784279
\(870\) 0 0
\(871\) 2.43212i 0.0824093i
\(872\) 0 0
\(873\) −0.972093 + 6.42984i −0.0329004 + 0.217617i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 48.9517i 1.65298i −0.562950 0.826491i \(-0.690333\pi\)
0.562950 0.826491i \(-0.309667\pi\)
\(878\) 0 0
\(879\) −38.6652 + 33.2590i −1.30414 + 1.12180i
\(880\) 0 0
\(881\) 9.76612i 0.329029i −0.986375 0.164514i \(-0.947394\pi\)
0.986375 0.164514i \(-0.0526057\pi\)
\(882\) 0 0
\(883\) 37.1170 1.24909 0.624544 0.780990i \(-0.285285\pi\)
0.624544 + 0.780990i \(0.285285\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.7792 0.697699 0.348849 0.937179i \(-0.386573\pi\)
0.348849 + 0.937179i \(0.386573\pi\)
\(888\) 0 0
\(889\) 56.2899 1.88790
\(890\) 0 0
\(891\) −4.88681 + 15.7923i −0.163714 + 0.529062i
\(892\) 0 0
\(893\) 52.8821 1.76963
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.60018 + 1.86029i 0.0534285 + 0.0621132i
\(898\) 0 0
\(899\) 56.3901i 1.88072i
\(900\) 0 0
\(901\) 35.7766i 1.19189i
\(902\) 0 0
\(903\) 14.5645 + 16.9319i 0.484675 + 0.563459i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −25.5231 −0.847481 −0.423741 0.905784i \(-0.639283\pi\)
−0.423741 + 0.905784i \(0.639283\pi\)
\(908\) 0 0
\(909\) −1.41850 + 9.38256i −0.0470487 + 0.311200i
\(910\) 0 0
\(911\) −18.6187 −0.616865 −0.308433 0.951246i \(-0.599804\pi\)
−0.308433 + 0.951246i \(0.599804\pi\)
\(912\) 0 0
\(913\) 21.2322 0.702683
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.9783 0.428581
\(918\) 0 0
\(919\) 27.9743i 0.922788i −0.887195 0.461394i \(-0.847350\pi\)
0.887195 0.461394i \(-0.152650\pi\)
\(920\) 0 0
\(921\) 43.6074 37.5101i 1.43691 1.23600i
\(922\) 0 0
\(923\) 7.18934i 0.236640i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 37.3366 + 5.64472i 1.22629 + 0.185397i
\(928\) 0 0
\(929\) 46.7604i 1.53416i −0.641551 0.767080i \(-0.721709\pi\)
0.641551 0.767080i \(-0.278291\pi\)
\(930\) 0 0
\(931\) −63.9990 −2.09748
\(932\) 0 0
\(933\) −33.8475 + 29.1149i −1.10812 + 0.953178i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −41.2253 −1.34677 −0.673387 0.739291i \(-0.735161\pi\)
−0.673387 + 0.739291i \(0.735161\pi\)
\(938\) 0 0
\(939\) 12.6768 10.9043i 0.413692 0.355849i
\(940\) 0 0
\(941\) −0.179836 −0.00586248 −0.00293124 0.999996i \(-0.500933\pi\)
−0.00293124 + 0.999996i \(0.500933\pi\)
\(942\) 0 0
\(943\) 8.25021i 0.268664i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.3864i 0.694965i −0.937686 0.347483i \(-0.887037\pi\)
0.937686 0.347483i \(-0.112963\pi\)
\(948\) 0 0
\(949\) 2.59955i 0.0843849i
\(950\) 0 0
\(951\) −6.32612 + 5.44160i −0.205139 + 0.176456i
\(952\) 0 0
\(953\) 11.0306i 0.357317i 0.983911 + 0.178658i \(0.0571757\pi\)
−0.983911 + 0.178658i \(0.942824\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 16.5573 + 19.2487i 0.535223 + 0.622223i
\(958\) 0 0
\(959\) 24.6280 0.795281
\(960\) 0 0
\(961\) −18.9248 −0.610478
\(962\) 0 0
\(963\) −11.2423 1.69966i −0.362278 0.0547709i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10.8832i 0.349980i 0.984570 + 0.174990i \(0.0559893\pi\)
−0.984570 + 0.174990i \(0.944011\pi\)
\(968\) 0 0
\(969\) 32.7288 + 38.0488i 1.05140 + 1.22230i
\(970\) 0 0
\(971\) 2.40482i 0.0771744i 0.999255 + 0.0385872i \(0.0122857\pi\)
−0.999255 + 0.0385872i \(0.987714\pi\)
\(972\) 0 0
\(973\) 11.6912i 0.374802i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 41.7609i 1.33605i 0.744138 + 0.668026i \(0.232860\pi\)
−0.744138 + 0.668026i \(0.767140\pi\)
\(978\) 0 0
\(979\) 7.73698 0.247275
\(980\) 0 0
\(981\) −1.74456 0.263751i −0.0556995 0.00842092i
\(982\) 0 0
\(983\) 33.2516 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 48.1695 + 55.9994i 1.53325 + 1.78248i
\(988\) 0 0
\(989\) 7.14881 0.227319
\(990\) 0 0
\(991\) 33.9434i 1.07825i 0.842226 + 0.539124i \(0.181245\pi\)
−0.842226 + 0.539124i \(0.818755\pi\)
\(992\) 0 0
\(993\) 1.80394 1.55171i 0.0572462 0.0492420i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 45.6428i 1.44552i 0.691098 + 0.722761i \(0.257127\pi\)
−0.691098 + 0.722761i \(0.742873\pi\)
\(998\) 0 0
\(999\) 11.9758 7.51364i 0.378897 0.237721i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.2.b.g.2351.10 12
3.2 odd 2 inner 2400.2.b.g.2351.12 12
4.3 odd 2 600.2.b.h.251.1 yes 12
5.2 odd 4 2400.2.m.e.1199.5 24
5.3 odd 4 2400.2.m.e.1199.20 24
5.4 even 2 2400.2.b.h.2351.3 12
8.3 odd 2 inner 2400.2.b.g.2351.9 12
8.5 even 2 600.2.b.h.251.11 yes 12
12.11 even 2 600.2.b.h.251.12 yes 12
15.2 even 4 2400.2.m.e.1199.17 24
15.8 even 4 2400.2.m.e.1199.8 24
15.14 odd 2 2400.2.b.h.2351.1 12
20.3 even 4 600.2.m.e.299.11 24
20.7 even 4 600.2.m.e.299.14 24
20.19 odd 2 600.2.b.g.251.12 yes 12
24.5 odd 2 600.2.b.h.251.2 yes 12
24.11 even 2 inner 2400.2.b.g.2351.11 12
40.3 even 4 2400.2.m.e.1199.19 24
40.13 odd 4 600.2.m.e.299.9 24
40.19 odd 2 2400.2.b.h.2351.4 12
40.27 even 4 2400.2.m.e.1199.6 24
40.29 even 2 600.2.b.g.251.2 yes 12
40.37 odd 4 600.2.m.e.299.16 24
60.23 odd 4 600.2.m.e.299.13 24
60.47 odd 4 600.2.m.e.299.12 24
60.59 even 2 600.2.b.g.251.1 12
120.29 odd 2 600.2.b.g.251.11 yes 12
120.53 even 4 600.2.m.e.299.15 24
120.59 even 2 2400.2.b.h.2351.2 12
120.77 even 4 600.2.m.e.299.10 24
120.83 odd 4 2400.2.m.e.1199.7 24
120.107 odd 4 2400.2.m.e.1199.18 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.b.g.251.1 12 60.59 even 2
600.2.b.g.251.2 yes 12 40.29 even 2
600.2.b.g.251.11 yes 12 120.29 odd 2
600.2.b.g.251.12 yes 12 20.19 odd 2
600.2.b.h.251.1 yes 12 4.3 odd 2
600.2.b.h.251.2 yes 12 24.5 odd 2
600.2.b.h.251.11 yes 12 8.5 even 2
600.2.b.h.251.12 yes 12 12.11 even 2
600.2.m.e.299.9 24 40.13 odd 4
600.2.m.e.299.10 24 120.77 even 4
600.2.m.e.299.11 24 20.3 even 4
600.2.m.e.299.12 24 60.47 odd 4
600.2.m.e.299.13 24 60.23 odd 4
600.2.m.e.299.14 24 20.7 even 4
600.2.m.e.299.15 24 120.53 even 4
600.2.m.e.299.16 24 40.37 odd 4
2400.2.b.g.2351.9 12 8.3 odd 2 inner
2400.2.b.g.2351.10 12 1.1 even 1 trivial
2400.2.b.g.2351.11 12 24.11 even 2 inner
2400.2.b.g.2351.12 12 3.2 odd 2 inner
2400.2.b.h.2351.1 12 15.14 odd 2
2400.2.b.h.2351.2 12 120.59 even 2
2400.2.b.h.2351.3 12 5.4 even 2
2400.2.b.h.2351.4 12 40.19 odd 2
2400.2.m.e.1199.5 24 5.2 odd 4
2400.2.m.e.1199.6 24 40.27 even 4
2400.2.m.e.1199.7 24 120.83 odd 4
2400.2.m.e.1199.8 24 15.8 even 4
2400.2.m.e.1199.17 24 15.2 even 4
2400.2.m.e.1199.18 24 120.107 odd 4
2400.2.m.e.1199.19 24 40.3 even 4
2400.2.m.e.1199.20 24 5.3 odd 4