Properties

Label 2400.2.b.a
Level $2400$
Weight $2$
Character orbit 2400.b
Analytic conductor $19.164$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,2,Mod(2351,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.2351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{3} + ( - 2 \beta - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta - 1) q^{3} + ( - 2 \beta - 1) q^{9} + 2 \beta q^{11} - 4 \beta q^{17} - 2 q^{19} + (\beta + 5) q^{27} + ( - 2 \beta - 4) q^{33} - 8 \beta q^{41} - 10 q^{43} + 7 q^{49} + (4 \beta + 8) q^{51} + ( - 2 \beta + 2) q^{57} - 10 \beta q^{59} + 14 q^{67} - 2 q^{73} + (4 \beta - 7) q^{81} - 2 \beta q^{83} + 4 \beta q^{89} + 10 q^{97} + ( - 2 \beta + 8) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 2 q^{9} - 4 q^{19} + 10 q^{27} - 8 q^{33} - 20 q^{43} + 14 q^{49} + 16 q^{51} + 4 q^{57} + 28 q^{67} - 4 q^{73} - 14 q^{81} + 20 q^{97} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2351.1
1.41421i
1.41421i
0 −1.00000 1.41421i 0 0 0 0 0 −1.00000 + 2.82843i 0
2351.2 0 −1.00000 + 1.41421i 0 0 0 0 0 −1.00000 2.82843i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
3.b odd 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.2.b.a 2
3.b odd 2 1 inner 2400.2.b.a 2
4.b odd 2 1 600.2.b.a 2
5.b even 2 1 96.2.f.a 2
5.c odd 4 2 2400.2.m.a 4
8.b even 2 1 600.2.b.a 2
8.d odd 2 1 CM 2400.2.b.a 2
12.b even 2 1 600.2.b.a 2
15.d odd 2 1 96.2.f.a 2
15.e even 4 2 2400.2.m.a 4
20.d odd 2 1 24.2.f.a 2
20.e even 4 2 600.2.m.a 4
24.f even 2 1 inner 2400.2.b.a 2
24.h odd 2 1 600.2.b.a 2
40.e odd 2 1 96.2.f.a 2
40.f even 2 1 24.2.f.a 2
40.i odd 4 2 600.2.m.a 4
40.k even 4 2 2400.2.m.a 4
45.h odd 6 2 2592.2.p.b 4
45.j even 6 2 2592.2.p.b 4
60.h even 2 1 24.2.f.a 2
60.l odd 4 2 600.2.m.a 4
80.k odd 4 2 768.2.c.h 4
80.q even 4 2 768.2.c.h 4
120.i odd 2 1 24.2.f.a 2
120.m even 2 1 96.2.f.a 2
120.q odd 4 2 2400.2.m.a 4
120.w even 4 2 600.2.m.a 4
180.n even 6 2 648.2.l.b 4
180.p odd 6 2 648.2.l.b 4
240.t even 4 2 768.2.c.h 4
240.bm odd 4 2 768.2.c.h 4
360.z odd 6 2 2592.2.p.b 4
360.bd even 6 2 2592.2.p.b 4
360.bh odd 6 2 648.2.l.b 4
360.bk even 6 2 648.2.l.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.2.f.a 2 20.d odd 2 1
24.2.f.a 2 40.f even 2 1
24.2.f.a 2 60.h even 2 1
24.2.f.a 2 120.i odd 2 1
96.2.f.a 2 5.b even 2 1
96.2.f.a 2 15.d odd 2 1
96.2.f.a 2 40.e odd 2 1
96.2.f.a 2 120.m even 2 1
600.2.b.a 2 4.b odd 2 1
600.2.b.a 2 8.b even 2 1
600.2.b.a 2 12.b even 2 1
600.2.b.a 2 24.h odd 2 1
600.2.m.a 4 20.e even 4 2
600.2.m.a 4 40.i odd 4 2
600.2.m.a 4 60.l odd 4 2
600.2.m.a 4 120.w even 4 2
648.2.l.b 4 180.n even 6 2
648.2.l.b 4 180.p odd 6 2
648.2.l.b 4 360.bh odd 6 2
648.2.l.b 4 360.bk even 6 2
768.2.c.h 4 80.k odd 4 2
768.2.c.h 4 80.q even 4 2
768.2.c.h 4 240.t even 4 2
768.2.c.h 4 240.bm odd 4 2
2400.2.b.a 2 1.a even 1 1 trivial
2400.2.b.a 2 3.b odd 2 1 inner
2400.2.b.a 2 8.d odd 2 1 CM
2400.2.b.a 2 24.f even 2 1 inner
2400.2.m.a 4 5.c odd 4 2
2400.2.m.a 4 15.e even 4 2
2400.2.m.a 4 40.k even 4 2
2400.2.m.a 4 120.q odd 4 2
2592.2.p.b 4 45.h odd 6 2
2592.2.p.b 4 45.j even 6 2
2592.2.p.b 4 360.z odd 6 2
2592.2.p.b 4 360.bd even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2400, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{11}^{2} + 8 \) Copy content Toggle raw display
\( T_{23} \) Copy content Toggle raw display
\( T_{43} + 10 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 8 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 32 \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 128 \) Copy content Toggle raw display
$43$ \( (T + 10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 200 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( (T - 14)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 8 \) Copy content Toggle raw display
$89$ \( T^{2} + 32 \) Copy content Toggle raw display
$97$ \( (T - 10)^{2} \) Copy content Toggle raw display
show more
show less