# Properties

 Label 2400.2.a.be Level $2400$ Weight $2$ Character orbit 2400.a Self dual yes Analytic conductor $19.164$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2400 = 2^{5} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2400.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$19.1640964851$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 480) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{3} + 2 q^{7} + q^{9}+O(q^{10})$$ q + q^3 + 2 * q^7 + q^9 $$q + q^{3} + 2 q^{7} + q^{9} - 6 q^{11} - 2 q^{13} - 6 q^{17} + 4 q^{19} + 2 q^{21} - 8 q^{23} + q^{27} - 8 q^{31} - 6 q^{33} + 2 q^{37} - 2 q^{39} - 6 q^{41} + 4 q^{43} - 4 q^{47} - 3 q^{49} - 6 q^{51} + 6 q^{53} + 4 q^{57} - 6 q^{59} - 6 q^{61} + 2 q^{63} - 8 q^{69} - 4 q^{71} + 12 q^{73} - 12 q^{77} - 8 q^{79} + q^{81} + 12 q^{83} + 14 q^{89} - 4 q^{91} - 8 q^{93} + 8 q^{97} - 6 q^{99}+O(q^{100})$$ q + q^3 + 2 * q^7 + q^9 - 6 * q^11 - 2 * q^13 - 6 * q^17 + 4 * q^19 + 2 * q^21 - 8 * q^23 + q^27 - 8 * q^31 - 6 * q^33 + 2 * q^37 - 2 * q^39 - 6 * q^41 + 4 * q^43 - 4 * q^47 - 3 * q^49 - 6 * q^51 + 6 * q^53 + 4 * q^57 - 6 * q^59 - 6 * q^61 + 2 * q^63 - 8 * q^69 - 4 * q^71 + 12 * q^73 - 12 * q^77 - 8 * q^79 + q^81 + 12 * q^83 + 14 * q^89 - 4 * q^91 - 8 * q^93 + 8 * q^97 - 6 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 0 0 2.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.2.a.be 1
3.b odd 2 1 7200.2.a.br 1
4.b odd 2 1 2400.2.a.d 1
5.b even 2 1 2400.2.a.c 1
5.c odd 4 2 480.2.f.a 2
8.b even 2 1 4800.2.a.ba 1
8.d odd 2 1 4800.2.a.bt 1
12.b even 2 1 7200.2.a.j 1
15.d odd 2 1 7200.2.a.p 1
15.e even 4 2 1440.2.f.g 2
20.d odd 2 1 2400.2.a.bf 1
20.e even 4 2 480.2.f.b yes 2
40.e odd 2 1 4800.2.a.z 1
40.f even 2 1 4800.2.a.bu 1
40.i odd 4 2 960.2.f.j 2
40.k even 4 2 960.2.f.g 2
60.h even 2 1 7200.2.a.bl 1
60.l odd 4 2 1440.2.f.e 2
80.i odd 4 2 3840.2.d.k 2
80.j even 4 2 3840.2.d.e 2
80.s even 4 2 3840.2.d.bc 2
80.t odd 4 2 3840.2.d.u 2
120.q odd 4 2 2880.2.f.g 2
120.w even 4 2 2880.2.f.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.2.f.a 2 5.c odd 4 2
480.2.f.b yes 2 20.e even 4 2
960.2.f.g 2 40.k even 4 2
960.2.f.j 2 40.i odd 4 2
1440.2.f.e 2 60.l odd 4 2
1440.2.f.g 2 15.e even 4 2
2400.2.a.c 1 5.b even 2 1
2400.2.a.d 1 4.b odd 2 1
2400.2.a.be 1 1.a even 1 1 trivial
2400.2.a.bf 1 20.d odd 2 1
2880.2.f.a 2 120.w even 4 2
2880.2.f.g 2 120.q odd 4 2
3840.2.d.e 2 80.j even 4 2
3840.2.d.k 2 80.i odd 4 2
3840.2.d.u 2 80.t odd 4 2
3840.2.d.bc 2 80.s even 4 2
4800.2.a.z 1 40.e odd 2 1
4800.2.a.ba 1 8.b even 2 1
4800.2.a.bt 1 8.d odd 2 1
4800.2.a.bu 1 40.f even 2 1
7200.2.a.j 1 12.b even 2 1
7200.2.a.p 1 15.d odd 2 1
7200.2.a.bl 1 60.h even 2 1
7200.2.a.br 1 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2400))$$:

 $$T_{7} - 2$$ T7 - 2 $$T_{11} + 6$$ T11 + 6 $$T_{13} + 2$$ T13 + 2 $$T_{19} - 4$$ T19 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 1$$
$5$ $$T$$
$7$ $$T - 2$$
$11$ $$T + 6$$
$13$ $$T + 2$$
$17$ $$T + 6$$
$19$ $$T - 4$$
$23$ $$T + 8$$
$29$ $$T$$
$31$ $$T + 8$$
$37$ $$T - 2$$
$41$ $$T + 6$$
$43$ $$T - 4$$
$47$ $$T + 4$$
$53$ $$T - 6$$
$59$ $$T + 6$$
$61$ $$T + 6$$
$67$ $$T$$
$71$ $$T + 4$$
$73$ $$T - 12$$
$79$ $$T + 8$$
$83$ $$T - 12$$
$89$ $$T - 14$$
$97$ $$T - 8$$