Properties

Label 2400.1.n
Level $2400$
Weight $1$
Character orbit 2400.n
Rep. character $\chi_{2400}(401,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $480$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2400.n (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(480\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2400, [\chi])\).

Total New Old
Modular forms 56 8 48
Cusp forms 8 2 6
Eisenstein series 48 6 42

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q + 2 q^{9} + 4 q^{31} - 2 q^{49} + 4 q^{79} + 2 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2400.1.n.a 2400.n 24.h $1$ $1.198$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-6}) \) \(\Q(\sqrt{10}) \) 120.1.i.a \(0\) \(-1\) \(0\) \(0\) \(q-q^{3}+q^{9}-q^{27}+2q^{31}-q^{49}+\cdots\)
2400.1.n.b 2400.n 24.h $1$ $1.198$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-6}) \) \(\Q(\sqrt{10}) \) 120.1.i.a \(0\) \(1\) \(0\) \(0\) \(q+q^{3}+q^{9}+q^{27}+2q^{31}-q^{49}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2400, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2400, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 3}\)