Properties

Label 240.4.f.g.49.4
Level $240$
Weight $4$
Character 240.49
Analytic conductor $14.160$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,4,Mod(49,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 240.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.1604584014\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{129})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 65x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.4
Root \(5.17891i\) of defining polynomial
Character \(\chi\) \(=\) 240.49
Dual form 240.4.f.g.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +(11.1789 - 0.178908i) q^{5} -33.0735i q^{7} -9.00000 q^{9} +O(q^{10})\) \(q+3.00000i q^{3} +(11.1789 - 0.178908i) q^{5} -33.0735i q^{7} -9.00000 q^{9} -48.3578 q^{11} -60.3578i q^{13} +(0.536725 + 33.5367i) q^{15} +17.7891i q^{17} -130.863 q^{19} +99.2204 q^{21} -70.8625i q^{23} +(124.936 - 4.00000i) q^{25} -27.0000i q^{27} -104.505 q^{29} +210.441 q^{31} -145.073i q^{33} +(-5.91712 - 369.725i) q^{35} -300.945i q^{37} +181.073 q^{39} +240.147 q^{41} +108.000i q^{43} +(-100.610 + 1.61018i) q^{45} -278.991i q^{47} -750.853 q^{49} -53.3673 q^{51} +328.358i q^{53} +(-540.588 + 8.65162i) q^{55} -392.588i q^{57} +889.533 q^{59} -241.450 q^{61} +297.661i q^{63} +(-10.7985 - 674.735i) q^{65} +103.834i q^{67} +212.588 q^{69} +277.597 q^{71} +274.403i q^{73} +(12.0000 + 374.808i) q^{75} +1599.36i q^{77} +366.991 q^{79} +81.0000 q^{81} -57.7251i q^{83} +(3.18262 + 198.863i) q^{85} -313.514i q^{87} +203.175 q^{89} -1996.24 q^{91} +631.322i q^{93} +(-1462.90 + 23.4124i) q^{95} -1283.45i q^{97} +435.220 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 22 q^{5} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 22 q^{5} - 36 q^{9} - 148 q^{11} - 66 q^{15} - 160 q^{19} - 12 q^{21} - 100 q^{29} + 24 q^{31} - 796 q^{35} + 588 q^{39} + 688 q^{41} - 198 q^{45} - 3276 q^{49} + 468 q^{51} - 1072 q^{55} + 1332 q^{59} + 488 q^{61} + 820 q^{65} - 240 q^{69} - 616 q^{71} + 48 q^{75} + 2104 q^{79} + 324 q^{81} + 2148 q^{85} - 1368 q^{89} - 1352 q^{91} - 2944 q^{95} + 1332 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 11.1789 0.178908i 0.999872 0.0160020i
\(6\) 0 0
\(7\) 33.0735i 1.78580i −0.450257 0.892899i \(-0.648667\pi\)
0.450257 0.892899i \(-0.351333\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −48.3578 −1.32549 −0.662747 0.748844i \(-0.730609\pi\)
−0.662747 + 0.748844i \(0.730609\pi\)
\(12\) 0 0
\(13\) 60.3578i 1.28771i −0.765147 0.643856i \(-0.777334\pi\)
0.765147 0.643856i \(-0.222666\pi\)
\(14\) 0 0
\(15\) 0.536725 + 33.5367i 0.00923879 + 0.577276i
\(16\) 0 0
\(17\) 17.7891i 0.253793i 0.991916 + 0.126897i \(0.0405017\pi\)
−0.991916 + 0.126897i \(0.959498\pi\)
\(18\) 0 0
\(19\) −130.863 −1.58010 −0.790051 0.613042i \(-0.789946\pi\)
−0.790051 + 0.613042i \(0.789946\pi\)
\(20\) 0 0
\(21\) 99.2204 1.03103
\(22\) 0 0
\(23\) 70.8625i 0.642429i −0.947007 0.321214i \(-0.895909\pi\)
0.947007 0.321214i \(-0.104091\pi\)
\(24\) 0 0
\(25\) 124.936 4.00000i 0.999488 0.0320000i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −104.505 −0.669174 −0.334587 0.942365i \(-0.608597\pi\)
−0.334587 + 0.942365i \(0.608597\pi\)
\(30\) 0 0
\(31\) 210.441 1.21923 0.609617 0.792696i \(-0.291323\pi\)
0.609617 + 0.792696i \(0.291323\pi\)
\(32\) 0 0
\(33\) 145.073i 0.765274i
\(34\) 0 0
\(35\) −5.91712 369.725i −0.0285764 1.78557i
\(36\) 0 0
\(37\) 300.945i 1.33717i −0.743638 0.668583i \(-0.766901\pi\)
0.743638 0.668583i \(-0.233099\pi\)
\(38\) 0 0
\(39\) 181.073 0.743460
\(40\) 0 0
\(41\) 240.147 0.914747 0.457374 0.889275i \(-0.348790\pi\)
0.457374 + 0.889275i \(0.348790\pi\)
\(42\) 0 0
\(43\) 108.000i 0.383020i 0.981491 + 0.191510i \(0.0613384\pi\)
−0.981491 + 0.191510i \(0.938662\pi\)
\(44\) 0 0
\(45\) −100.610 + 1.61018i −0.333291 + 0.00533402i
\(46\) 0 0
\(47\) 278.991i 0.865850i −0.901430 0.432925i \(-0.857481\pi\)
0.901430 0.432925i \(-0.142519\pi\)
\(48\) 0 0
\(49\) −750.853 −2.18908
\(50\) 0 0
\(51\) −53.3673 −0.146528
\(52\) 0 0
\(53\) 328.358i 0.851008i 0.904957 + 0.425504i \(0.139903\pi\)
−0.904957 + 0.425504i \(0.860097\pi\)
\(54\) 0 0
\(55\) −540.588 + 8.65162i −1.32532 + 0.0212106i
\(56\) 0 0
\(57\) 392.588i 0.912272i
\(58\) 0 0
\(59\) 889.533 1.96284 0.981418 0.191882i \(-0.0614589\pi\)
0.981418 + 0.191882i \(0.0614589\pi\)
\(60\) 0 0
\(61\) −241.450 −0.506795 −0.253398 0.967362i \(-0.581548\pi\)
−0.253398 + 0.967362i \(0.581548\pi\)
\(62\) 0 0
\(63\) 297.661i 0.595266i
\(64\) 0 0
\(65\) −10.7985 674.735i −0.0206060 1.28755i
\(66\) 0 0
\(67\) 103.834i 0.189334i 0.995509 + 0.0946669i \(0.0301786\pi\)
−0.995509 + 0.0946669i \(0.969821\pi\)
\(68\) 0 0
\(69\) 212.588 0.370906
\(70\) 0 0
\(71\) 277.597 0.464010 0.232005 0.972715i \(-0.425471\pi\)
0.232005 + 0.972715i \(0.425471\pi\)
\(72\) 0 0
\(73\) 274.403i 0.439951i 0.975505 + 0.219976i \(0.0705978\pi\)
−0.975505 + 0.219976i \(0.929402\pi\)
\(74\) 0 0
\(75\) 12.0000 + 374.808i 0.0184752 + 0.577055i
\(76\) 0 0
\(77\) 1599.36i 2.36706i
\(78\) 0 0
\(79\) 366.991 0.522654 0.261327 0.965250i \(-0.415840\pi\)
0.261327 + 0.965250i \(0.415840\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 57.7251i 0.0763391i −0.999271 0.0381696i \(-0.987847\pi\)
0.999271 0.0381696i \(-0.0121527\pi\)
\(84\) 0 0
\(85\) 3.18262 + 198.863i 0.00406121 + 0.253761i
\(86\) 0 0
\(87\) 313.514i 0.386348i
\(88\) 0 0
\(89\) 203.175 0.241983 0.120992 0.992654i \(-0.461393\pi\)
0.120992 + 0.992654i \(0.461393\pi\)
\(90\) 0 0
\(91\) −1996.24 −2.29959
\(92\) 0 0
\(93\) 631.322i 0.703925i
\(94\) 0 0
\(95\) −1462.90 + 23.4124i −1.57990 + 0.0252849i
\(96\) 0 0
\(97\) 1283.45i 1.34345i −0.740801 0.671725i \(-0.765554\pi\)
0.740801 0.671725i \(-0.234446\pi\)
\(98\) 0 0
\(99\) 435.220 0.441831
\(100\) 0 0
\(101\) 886.908 0.873768 0.436884 0.899518i \(-0.356082\pi\)
0.436884 + 0.899518i \(0.356082\pi\)
\(102\) 0 0
\(103\) 783.055i 0.749094i 0.927208 + 0.374547i \(0.122202\pi\)
−0.927208 + 0.374547i \(0.877798\pi\)
\(104\) 0 0
\(105\) 1109.18 17.7513i 1.03090 0.0164986i
\(106\) 0 0
\(107\) 1301.51i 1.17590i 0.808897 + 0.587950i \(0.200065\pi\)
−0.808897 + 0.587950i \(0.799935\pi\)
\(108\) 0 0
\(109\) −1161.91 −1.02102 −0.510508 0.859873i \(-0.670543\pi\)
−0.510508 + 0.859873i \(0.670543\pi\)
\(110\) 0 0
\(111\) 902.836 0.772013
\(112\) 0 0
\(113\) 507.808i 0.422748i 0.977405 + 0.211374i \(0.0677938\pi\)
−0.977405 + 0.211374i \(0.932206\pi\)
\(114\) 0 0
\(115\) −12.6779 792.166i −0.0102802 0.642346i
\(116\) 0 0
\(117\) 543.220i 0.429237i
\(118\) 0 0
\(119\) 588.346 0.453224
\(120\) 0 0
\(121\) 1007.48 0.756933
\(122\) 0 0
\(123\) 720.441i 0.528130i
\(124\) 0 0
\(125\) 1395.93 67.0677i 0.998848 0.0479898i
\(126\) 0 0
\(127\) 796.064i 0.556215i 0.960550 + 0.278107i \(0.0897071\pi\)
−0.960550 + 0.278107i \(0.910293\pi\)
\(128\) 0 0
\(129\) −324.000 −0.221137
\(130\) 0 0
\(131\) 91.4764 0.0610102 0.0305051 0.999535i \(-0.490288\pi\)
0.0305051 + 0.999535i \(0.490288\pi\)
\(132\) 0 0
\(133\) 4328.08i 2.82174i
\(134\) 0 0
\(135\) −4.83053 301.831i −0.00307960 0.192425i
\(136\) 0 0
\(137\) 2273.28i 1.41766i −0.705380 0.708829i \(-0.749224\pi\)
0.705380 0.708829i \(-0.250776\pi\)
\(138\) 0 0
\(139\) −738.735 −0.450782 −0.225391 0.974268i \(-0.572366\pi\)
−0.225391 + 0.974268i \(0.572366\pi\)
\(140\) 0 0
\(141\) 836.972 0.499899
\(142\) 0 0
\(143\) 2918.77i 1.70685i
\(144\) 0 0
\(145\) −1168.25 + 18.6968i −0.669088 + 0.0107082i
\(146\) 0 0
\(147\) 2252.56i 1.26386i
\(148\) 0 0
\(149\) −1507.15 −0.828661 −0.414330 0.910127i \(-0.635984\pi\)
−0.414330 + 0.910127i \(0.635984\pi\)
\(150\) 0 0
\(151\) −154.365 −0.0831925 −0.0415962 0.999135i \(-0.513244\pi\)
−0.0415962 + 0.999135i \(0.513244\pi\)
\(152\) 0 0
\(153\) 160.102i 0.0845978i
\(154\) 0 0
\(155\) 2352.50 37.6496i 1.21908 0.0195102i
\(156\) 0 0
\(157\) 315.514i 0.160387i 0.996779 + 0.0801935i \(0.0255538\pi\)
−0.996779 + 0.0801935i \(0.974446\pi\)
\(158\) 0 0
\(159\) −985.073 −0.491330
\(160\) 0 0
\(161\) −2343.67 −1.14725
\(162\) 0 0
\(163\) 1457.85i 0.700539i 0.936649 + 0.350270i \(0.113910\pi\)
−0.936649 + 0.350270i \(0.886090\pi\)
\(164\) 0 0
\(165\) −25.9549 1621.76i −0.0122460 0.765176i
\(166\) 0 0
\(167\) 2198.61i 1.01876i −0.860541 0.509381i \(-0.829874\pi\)
0.860541 0.509381i \(-0.170126\pi\)
\(168\) 0 0
\(169\) −1446.07 −0.658200
\(170\) 0 0
\(171\) 1177.76 0.526700
\(172\) 0 0
\(173\) 2030.49i 0.892343i −0.894948 0.446171i \(-0.852787\pi\)
0.894948 0.446171i \(-0.147213\pi\)
\(174\) 0 0
\(175\) −132.294 4132.06i −0.0571456 1.78488i
\(176\) 0 0
\(177\) 2668.60i 1.13324i
\(178\) 0 0
\(179\) 427.220 0.178391 0.0891954 0.996014i \(-0.471570\pi\)
0.0891954 + 0.996014i \(0.471570\pi\)
\(180\) 0 0
\(181\) −3779.97 −1.55228 −0.776140 0.630561i \(-0.782825\pi\)
−0.776140 + 0.630561i \(0.782825\pi\)
\(182\) 0 0
\(183\) 724.350i 0.292598i
\(184\) 0 0
\(185\) −53.8416 3364.24i −0.0213974 1.33699i
\(186\) 0 0
\(187\) 860.241i 0.336401i
\(188\) 0 0
\(189\) −892.983 −0.343677
\(190\) 0 0
\(191\) −1565.60 −0.593103 −0.296551 0.955017i \(-0.595837\pi\)
−0.296551 + 0.955017i \(0.595837\pi\)
\(192\) 0 0
\(193\) 2642.63i 0.985599i −0.870143 0.492800i \(-0.835974\pi\)
0.870143 0.492800i \(-0.164026\pi\)
\(194\) 0 0
\(195\) 2024.20 32.3956i 0.743365 0.0118969i
\(196\) 0 0
\(197\) 98.4522i 0.0356062i −0.999842 0.0178031i \(-0.994333\pi\)
0.999842 0.0178031i \(-0.00566721\pi\)
\(198\) 0 0
\(199\) 1131.62 0.403106 0.201553 0.979478i \(-0.435401\pi\)
0.201553 + 0.979478i \(0.435401\pi\)
\(200\) 0 0
\(201\) −311.503 −0.109312
\(202\) 0 0
\(203\) 3456.33i 1.19501i
\(204\) 0 0
\(205\) 2684.58 42.9643i 0.914630 0.0146378i
\(206\) 0 0
\(207\) 637.763i 0.214143i
\(208\) 0 0
\(209\) 6328.23 2.09441
\(210\) 0 0
\(211\) 1902.85 0.620841 0.310420 0.950599i \(-0.399530\pi\)
0.310420 + 0.950599i \(0.399530\pi\)
\(212\) 0 0
\(213\) 832.791i 0.267896i
\(214\) 0 0
\(215\) 19.3221 + 1207.32i 0.00612910 + 0.382971i
\(216\) 0 0
\(217\) 6960.00i 2.17731i
\(218\) 0 0
\(219\) −823.209 −0.254006
\(220\) 0 0
\(221\) 1073.71 0.326813
\(222\) 0 0
\(223\) 4855.59i 1.45809i −0.684465 0.729046i \(-0.739964\pi\)
0.684465 0.729046i \(-0.260036\pi\)
\(224\) 0 0
\(225\) −1124.42 + 36.0000i −0.333163 + 0.0106667i
\(226\) 0 0
\(227\) 6536.19i 1.91111i −0.294812 0.955555i \(-0.595257\pi\)
0.294812 0.955555i \(-0.404743\pi\)
\(228\) 0 0
\(229\) 5510.35 1.59011 0.795053 0.606539i \(-0.207443\pi\)
0.795053 + 0.606539i \(0.207443\pi\)
\(230\) 0 0
\(231\) −4798.08 −1.36663
\(232\) 0 0
\(233\) 5915.65i 1.66329i 0.555306 + 0.831646i \(0.312601\pi\)
−0.555306 + 0.831646i \(0.687399\pi\)
\(234\) 0 0
\(235\) −49.9137 3118.81i −0.0138554 0.865739i
\(236\) 0 0
\(237\) 1100.97i 0.301754i
\(238\) 0 0
\(239\) 2263.25 0.612543 0.306272 0.951944i \(-0.400918\pi\)
0.306272 + 0.951944i \(0.400918\pi\)
\(240\) 0 0
\(241\) 772.493 0.206476 0.103238 0.994657i \(-0.467080\pi\)
0.103238 + 0.994657i \(0.467080\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) −8393.72 + 134.334i −2.18880 + 0.0350297i
\(246\) 0 0
\(247\) 7898.58i 2.03471i
\(248\) 0 0
\(249\) 173.175 0.0440744
\(250\) 0 0
\(251\) −596.192 −0.149926 −0.0749628 0.997186i \(-0.523884\pi\)
−0.0749628 + 0.997186i \(0.523884\pi\)
\(252\) 0 0
\(253\) 3426.76i 0.851535i
\(254\) 0 0
\(255\) −596.588 + 9.54785i −0.146509 + 0.00234474i
\(256\) 0 0
\(257\) 4139.19i 1.00465i −0.864678 0.502326i \(-0.832478\pi\)
0.864678 0.502326i \(-0.167522\pi\)
\(258\) 0 0
\(259\) −9953.30 −2.38791
\(260\) 0 0
\(261\) 940.542 0.223058
\(262\) 0 0
\(263\) 1611.34i 0.377792i 0.981997 + 0.188896i \(0.0604909\pi\)
−0.981997 + 0.188896i \(0.939509\pi\)
\(264\) 0 0
\(265\) 58.7460 + 3670.68i 0.0136179 + 0.850899i
\(266\) 0 0
\(267\) 609.526i 0.139709i
\(268\) 0 0
\(269\) 7031.33 1.59371 0.796855 0.604171i \(-0.206496\pi\)
0.796855 + 0.604171i \(0.206496\pi\)
\(270\) 0 0
\(271\) 5441.27 1.21968 0.609840 0.792524i \(-0.291234\pi\)
0.609840 + 0.792524i \(0.291234\pi\)
\(272\) 0 0
\(273\) 5988.72i 1.32767i
\(274\) 0 0
\(275\) −6041.63 + 193.431i −1.32481 + 0.0424158i
\(276\) 0 0
\(277\) 1080.43i 0.234355i −0.993111 0.117178i \(-0.962615\pi\)
0.993111 0.117178i \(-0.0373847\pi\)
\(278\) 0 0
\(279\) −1893.97 −0.406411
\(280\) 0 0
\(281\) −1602.99 −0.340308 −0.170154 0.985417i \(-0.554427\pi\)
−0.170154 + 0.985417i \(0.554427\pi\)
\(282\) 0 0
\(283\) 334.810i 0.0703265i −0.999382 0.0351632i \(-0.988805\pi\)
0.999382 0.0351632i \(-0.0111951\pi\)
\(284\) 0 0
\(285\) −70.2372 4388.70i −0.0145982 0.912155i
\(286\) 0 0
\(287\) 7942.49i 1.63355i
\(288\) 0 0
\(289\) 4596.55 0.935589
\(290\) 0 0
\(291\) 3850.35 0.775641
\(292\) 0 0
\(293\) 539.250i 0.107520i 0.998554 + 0.0537599i \(0.0171206\pi\)
−0.998554 + 0.0537599i \(0.982879\pi\)
\(294\) 0 0
\(295\) 9944.01 159.145i 1.96258 0.0314094i
\(296\) 0 0
\(297\) 1305.66i 0.255091i
\(298\) 0 0
\(299\) −4277.11 −0.827263
\(300\) 0 0
\(301\) 3571.93 0.683996
\(302\) 0 0
\(303\) 2660.72i 0.504470i
\(304\) 0 0
\(305\) −2699.15 + 43.1974i −0.506731 + 0.00810977i
\(306\) 0 0
\(307\) 8477.58i 1.57603i 0.615656 + 0.788015i \(0.288891\pi\)
−0.615656 + 0.788015i \(0.711109\pi\)
\(308\) 0 0
\(309\) −2349.16 −0.432490
\(310\) 0 0
\(311\) −3646.92 −0.664945 −0.332473 0.943113i \(-0.607883\pi\)
−0.332473 + 0.943113i \(0.607883\pi\)
\(312\) 0 0
\(313\) 7537.05i 1.36108i 0.732709 + 0.680542i \(0.238255\pi\)
−0.732709 + 0.680542i \(0.761745\pi\)
\(314\) 0 0
\(315\) 53.2540 + 3327.53i 0.00952548 + 0.595190i
\(316\) 0 0
\(317\) 10721.2i 1.89956i 0.312916 + 0.949781i \(0.398694\pi\)
−0.312916 + 0.949781i \(0.601306\pi\)
\(318\) 0 0
\(319\) 5053.62 0.886986
\(320\) 0 0
\(321\) −3904.52 −0.678907
\(322\) 0 0
\(323\) 2327.92i 0.401019i
\(324\) 0 0
\(325\) −241.431 7540.86i −0.0412068 1.28705i
\(326\) 0 0
\(327\) 3485.73i 0.589484i
\(328\) 0 0
\(329\) −9227.18 −1.54623
\(330\) 0 0
\(331\) 4405.14 0.731505 0.365753 0.930712i \(-0.380812\pi\)
0.365753 + 0.930712i \(0.380812\pi\)
\(332\) 0 0
\(333\) 2708.51i 0.445722i
\(334\) 0 0
\(335\) 18.5768 + 1160.75i 0.00302973 + 0.189310i
\(336\) 0 0
\(337\) 186.117i 0.0300844i 0.999887 + 0.0150422i \(0.00478827\pi\)
−0.999887 + 0.0150422i \(0.995212\pi\)
\(338\) 0 0
\(339\) −1523.42 −0.244074
\(340\) 0 0
\(341\) −10176.5 −1.61609
\(342\) 0 0
\(343\) 13489.1i 2.12345i
\(344\) 0 0
\(345\) 2376.50 38.0337i 0.370859 0.00593526i
\(346\) 0 0
\(347\) 5547.38i 0.858211i 0.903254 + 0.429105i \(0.141171\pi\)
−0.903254 + 0.429105i \(0.858829\pi\)
\(348\) 0 0
\(349\) −9078.82 −1.39249 −0.696244 0.717805i \(-0.745147\pi\)
−0.696244 + 0.717805i \(0.745147\pi\)
\(350\) 0 0
\(351\) −1629.66 −0.247820
\(352\) 0 0
\(353\) 10678.1i 1.61002i 0.593262 + 0.805009i \(0.297840\pi\)
−0.593262 + 0.805009i \(0.702160\pi\)
\(354\) 0 0
\(355\) 3103.23 49.6644i 0.463951 0.00742511i
\(356\) 0 0
\(357\) 1765.04i 0.261669i
\(358\) 0 0
\(359\) −265.733 −0.0390665 −0.0195332 0.999809i \(-0.506218\pi\)
−0.0195332 + 0.999809i \(0.506218\pi\)
\(360\) 0 0
\(361\) 10266.0 1.49672
\(362\) 0 0
\(363\) 3022.44i 0.437016i
\(364\) 0 0
\(365\) 49.0930 + 3067.53i 0.00704012 + 0.439895i
\(366\) 0 0
\(367\) 5854.21i 0.832663i −0.909213 0.416332i \(-0.863316\pi\)
0.909213 0.416332i \(-0.136684\pi\)
\(368\) 0 0
\(369\) −2161.32 −0.304916
\(370\) 0 0
\(371\) 10859.9 1.51973
\(372\) 0 0
\(373\) 10134.5i 1.40682i −0.710787 0.703408i \(-0.751661\pi\)
0.710787 0.703408i \(-0.248339\pi\)
\(374\) 0 0
\(375\) 201.203 + 4187.80i 0.0277069 + 0.576685i
\(376\) 0 0
\(377\) 6307.68i 0.861703i
\(378\) 0 0
\(379\) −4235.70 −0.574072 −0.287036 0.957920i \(-0.592670\pi\)
−0.287036 + 0.957920i \(0.592670\pi\)
\(380\) 0 0
\(381\) −2388.19 −0.321131
\(382\) 0 0
\(383\) 8100.84i 1.08077i −0.841419 0.540383i \(-0.818279\pi\)
0.841419 0.540383i \(-0.181721\pi\)
\(384\) 0 0
\(385\) 286.139 + 17879.1i 0.0378779 + 2.36676i
\(386\) 0 0
\(387\) 972.000i 0.127673i
\(388\) 0 0
\(389\) 13820.2 1.80131 0.900656 0.434532i \(-0.143086\pi\)
0.900656 + 0.434532i \(0.143086\pi\)
\(390\) 0 0
\(391\) 1260.58 0.163044
\(392\) 0 0
\(393\) 274.429i 0.0352242i
\(394\) 0 0
\(395\) 4102.55 65.6577i 0.522587 0.00836353i
\(396\) 0 0
\(397\) 11523.9i 1.45685i −0.685125 0.728425i \(-0.740252\pi\)
0.685125 0.728425i \(-0.259748\pi\)
\(398\) 0 0
\(399\) −12984.2 −1.62913
\(400\) 0 0
\(401\) 700.915 0.0872869 0.0436434 0.999047i \(-0.486103\pi\)
0.0436434 + 0.999047i \(0.486103\pi\)
\(402\) 0 0
\(403\) 12701.7i 1.57002i
\(404\) 0 0
\(405\) 905.492 14.4916i 0.111097 0.00177801i
\(406\) 0 0
\(407\) 14553.1i 1.77240i
\(408\) 0 0
\(409\) −6650.69 −0.804047 −0.402024 0.915629i \(-0.631693\pi\)
−0.402024 + 0.915629i \(0.631693\pi\)
\(410\) 0 0
\(411\) 6819.83 0.818485
\(412\) 0 0
\(413\) 29419.9i 3.50523i
\(414\) 0 0
\(415\) −10.3275 645.303i −0.00122158 0.0763294i
\(416\) 0 0
\(417\) 2216.20i 0.260259i
\(418\) 0 0
\(419\) 13844.4 1.61418 0.807091 0.590426i \(-0.201040\pi\)
0.807091 + 0.590426i \(0.201040\pi\)
\(420\) 0 0
\(421\) 12576.3 1.45590 0.727949 0.685631i \(-0.240474\pi\)
0.727949 + 0.685631i \(0.240474\pi\)
\(422\) 0 0
\(423\) 2510.92i 0.288617i
\(424\) 0 0
\(425\) 71.1563 + 2222.50i 0.00812139 + 0.253663i
\(426\) 0 0
\(427\) 7985.59i 0.905035i
\(428\) 0 0
\(429\) −8756.32 −0.985452
\(430\) 0 0
\(431\) −13440.6 −1.50212 −0.751059 0.660236i \(-0.770456\pi\)
−0.751059 + 0.660236i \(0.770456\pi\)
\(432\) 0 0
\(433\) 3012.87i 0.334387i 0.985924 + 0.167193i \(0.0534704\pi\)
−0.985924 + 0.167193i \(0.946530\pi\)
\(434\) 0 0
\(435\) −56.0903 3504.75i −0.00618235 0.386298i
\(436\) 0 0
\(437\) 9273.25i 1.01510i
\(438\) 0 0
\(439\) 10675.0 1.16057 0.580283 0.814415i \(-0.302942\pi\)
0.580283 + 0.814415i \(0.302942\pi\)
\(440\) 0 0
\(441\) 6757.68 0.729692
\(442\) 0 0
\(443\) 125.868i 0.0134992i −0.999977 0.00674962i \(-0.997852\pi\)
0.999977 0.00674962i \(-0.00214849\pi\)
\(444\) 0 0
\(445\) 2271.28 36.3497i 0.241952 0.00387223i
\(446\) 0 0
\(447\) 4521.45i 0.478428i
\(448\) 0 0
\(449\) 9707.21 1.02029 0.510146 0.860088i \(-0.329591\pi\)
0.510146 + 0.860088i \(0.329591\pi\)
\(450\) 0 0
\(451\) −11613.0 −1.21249
\(452\) 0 0
\(453\) 463.096i 0.0480312i
\(454\) 0 0
\(455\) −22315.8 + 357.144i −2.29930 + 0.0367982i
\(456\) 0 0
\(457\) 1279.97i 0.131016i 0.997852 + 0.0655082i \(0.0208668\pi\)
−0.997852 + 0.0655082i \(0.979133\pi\)
\(458\) 0 0
\(459\) 480.305 0.0488425
\(460\) 0 0
\(461\) 3080.48 0.311220 0.155610 0.987819i \(-0.450266\pi\)
0.155610 + 0.987819i \(0.450266\pi\)
\(462\) 0 0
\(463\) 18017.3i 1.80850i −0.427008 0.904248i \(-0.640432\pi\)
0.427008 0.904248i \(-0.359568\pi\)
\(464\) 0 0
\(465\) 112.949 + 7057.49i 0.0112642 + 0.703835i
\(466\) 0 0
\(467\) 7236.77i 0.717083i −0.933514 0.358541i \(-0.883274\pi\)
0.933514 0.358541i \(-0.116726\pi\)
\(468\) 0 0
\(469\) 3434.16 0.338112
\(470\) 0 0
\(471\) −946.542 −0.0925995
\(472\) 0 0
\(473\) 5222.64i 0.507690i
\(474\) 0 0
\(475\) −16349.4 + 523.450i −1.57929 + 0.0505632i
\(476\) 0 0
\(477\) 2955.22i 0.283669i
\(478\) 0 0
\(479\) 4932.78 0.470532 0.235266 0.971931i \(-0.424404\pi\)
0.235266 + 0.971931i \(0.424404\pi\)
\(480\) 0 0
\(481\) −18164.4 −1.72188
\(482\) 0 0
\(483\) 7031.01i 0.662364i
\(484\) 0 0
\(485\) −229.620 14347.6i −0.0214979 1.34328i
\(486\) 0 0
\(487\) 5937.91i 0.552510i −0.961084 0.276255i \(-0.910907\pi\)
0.961084 0.276255i \(-0.0890934\pi\)
\(488\) 0 0
\(489\) −4373.56 −0.404456
\(490\) 0 0
\(491\) −15703.5 −1.44336 −0.721678 0.692229i \(-0.756629\pi\)
−0.721678 + 0.692229i \(0.756629\pi\)
\(492\) 0 0
\(493\) 1859.04i 0.169832i
\(494\) 0 0
\(495\) 4865.29 77.8646i 0.441775 0.00707020i
\(496\) 0 0
\(497\) 9181.09i 0.828628i
\(498\) 0 0
\(499\) −5656.77 −0.507478 −0.253739 0.967273i \(-0.581660\pi\)
−0.253739 + 0.967273i \(0.581660\pi\)
\(500\) 0 0
\(501\) 6595.82 0.588183
\(502\) 0 0
\(503\) 290.441i 0.0257457i −0.999917 0.0128729i \(-0.995902\pi\)
0.999917 0.0128729i \(-0.00409768\pi\)
\(504\) 0 0
\(505\) 9914.66 158.675i 0.873657 0.0139821i
\(506\) 0 0
\(507\) 4338.20i 0.380012i
\(508\) 0 0
\(509\) −17330.6 −1.50916 −0.754582 0.656206i \(-0.772160\pi\)
−0.754582 + 0.656206i \(0.772160\pi\)
\(510\) 0 0
\(511\) 9075.45 0.785664
\(512\) 0 0
\(513\) 3533.29i 0.304091i
\(514\) 0 0
\(515\) 140.095 + 8753.70i 0.0119870 + 0.748998i
\(516\) 0 0
\(517\) 13491.4i 1.14768i
\(518\) 0 0
\(519\) 6091.47 0.515194
\(520\) 0 0
\(521\) 6174.36 0.519201 0.259601 0.965716i \(-0.416409\pi\)
0.259601 + 0.965716i \(0.416409\pi\)
\(522\) 0 0
\(523\) 13389.4i 1.11946i 0.828675 + 0.559730i \(0.189095\pi\)
−0.828675 + 0.559730i \(0.810905\pi\)
\(524\) 0 0
\(525\) 12396.2 396.881i 1.03050 0.0329930i
\(526\) 0 0
\(527\) 3743.55i 0.309434i
\(528\) 0 0
\(529\) 7145.50 0.587285
\(530\) 0 0
\(531\) −8005.80 −0.654279
\(532\) 0 0
\(533\) 14494.7i 1.17793i
\(534\) 0 0
\(535\) 232.850 + 14549.4i 0.0188168 + 1.17575i
\(536\) 0 0
\(537\) 1281.66i 0.102994i
\(538\) 0 0
\(539\) 36309.6 2.90161
\(540\) 0 0
\(541\) −14355.5 −1.14084 −0.570418 0.821354i \(-0.693219\pi\)
−0.570418 + 0.821354i \(0.693219\pi\)
\(542\) 0 0
\(543\) 11339.9i 0.896209i
\(544\) 0 0
\(545\) −12988.9 + 207.875i −1.02089 + 0.0163384i
\(546\) 0 0
\(547\) 21133.9i 1.65195i −0.563704 0.825977i \(-0.690624\pi\)
0.563704 0.825977i \(-0.309376\pi\)
\(548\) 0 0
\(549\) 2173.05 0.168932
\(550\) 0 0
\(551\) 13675.8 1.05736
\(552\) 0 0
\(553\) 12137.6i 0.933355i
\(554\) 0 0
\(555\) 10092.7 161.525i 0.771914 0.0123538i
\(556\) 0 0
\(557\) 3098.60i 0.235713i −0.993031 0.117856i \(-0.962398\pi\)
0.993031 0.117856i \(-0.0376023\pi\)
\(558\) 0 0
\(559\) 6518.64 0.493219
\(560\) 0 0
\(561\) 2580.72 0.194221
\(562\) 0 0
\(563\) 7908.77i 0.592033i −0.955183 0.296017i \(-0.904342\pi\)
0.955183 0.296017i \(-0.0956584\pi\)
\(564\) 0 0
\(565\) 90.8511 + 5676.74i 0.00676484 + 0.422694i
\(566\) 0 0
\(567\) 2678.95i 0.198422i
\(568\) 0 0
\(569\) 10740.7 0.791345 0.395673 0.918392i \(-0.370512\pi\)
0.395673 + 0.918392i \(0.370512\pi\)
\(570\) 0 0
\(571\) −14701.2 −1.07745 −0.538725 0.842482i \(-0.681094\pi\)
−0.538725 + 0.842482i \(0.681094\pi\)
\(572\) 0 0
\(573\) 4696.79i 0.342428i
\(574\) 0 0
\(575\) −283.450 8853.28i −0.0205577 0.642100i
\(576\) 0 0
\(577\) 15788.1i 1.13911i −0.821954 0.569554i \(-0.807116\pi\)
0.821954 0.569554i \(-0.192884\pi\)
\(578\) 0 0
\(579\) 7927.89 0.569036
\(580\) 0 0
\(581\) −1909.17 −0.136326
\(582\) 0 0
\(583\) 15878.7i 1.12801i
\(584\) 0 0
\(585\) 97.1867 + 6072.61i 0.00686867 + 0.429182i
\(586\) 0 0
\(587\) 14778.5i 1.03913i 0.854430 + 0.519567i \(0.173907\pi\)
−0.854430 + 0.519567i \(0.826093\pi\)
\(588\) 0 0
\(589\) −27538.8 −1.92651
\(590\) 0 0
\(591\) 295.356 0.0205573
\(592\) 0 0
\(593\) 11143.9i 0.771713i 0.922559 + 0.385857i \(0.126094\pi\)
−0.922559 + 0.385857i \(0.873906\pi\)
\(594\) 0 0
\(595\) 6577.07 105.260i 0.453166 0.00725251i
\(596\) 0 0
\(597\) 3394.85i 0.232733i
\(598\) 0 0
\(599\) −7707.87 −0.525768 −0.262884 0.964827i \(-0.584674\pi\)
−0.262884 + 0.964827i \(0.584674\pi\)
\(600\) 0 0
\(601\) −13681.4 −0.928580 −0.464290 0.885683i \(-0.653691\pi\)
−0.464290 + 0.885683i \(0.653691\pi\)
\(602\) 0 0
\(603\) 934.508i 0.0631113i
\(604\) 0 0
\(605\) 11262.5 180.246i 0.756837 0.0121125i
\(606\) 0 0
\(607\) 11552.4i 0.772481i 0.922398 + 0.386241i \(0.126227\pi\)
−0.922398 + 0.386241i \(0.873773\pi\)
\(608\) 0 0
\(609\) −10369.0 −0.689939
\(610\) 0 0
\(611\) −16839.3 −1.11496
\(612\) 0 0
\(613\) 9904.66i 0.652603i −0.945266 0.326301i \(-0.894198\pi\)
0.945266 0.326301i \(-0.105802\pi\)
\(614\) 0 0
\(615\) 128.893 + 8053.74i 0.00845116 + 0.528062i
\(616\) 0 0
\(617\) 20323.5i 1.32608i −0.748582 0.663042i \(-0.769265\pi\)
0.748582 0.663042i \(-0.230735\pi\)
\(618\) 0 0
\(619\) −9223.99 −0.598940 −0.299470 0.954106i \(-0.596810\pi\)
−0.299470 + 0.954106i \(0.596810\pi\)
\(620\) 0 0
\(621\) −1913.29 −0.123635
\(622\) 0 0
\(623\) 6719.70i 0.432134i
\(624\) 0 0
\(625\) 15593.0 999.488i 0.997952 0.0639672i
\(626\) 0 0
\(627\) 18984.7i 1.20921i
\(628\) 0 0
\(629\) 5353.54 0.339364
\(630\) 0 0
\(631\) 16916.0 1.06722 0.533610 0.845730i \(-0.320835\pi\)
0.533610 + 0.845730i \(0.320835\pi\)
\(632\) 0 0
\(633\) 5708.54i 0.358443i
\(634\) 0 0
\(635\) 142.422 + 8899.13i 0.00890057 + 0.556143i
\(636\) 0 0
\(637\) 45319.9i 2.81890i
\(638\) 0 0
\(639\) −2498.37 −0.154670
\(640\) 0 0
\(641\) −5811.35 −0.358088 −0.179044 0.983841i \(-0.557300\pi\)
−0.179044 + 0.983841i \(0.557300\pi\)
\(642\) 0 0
\(643\) 27931.7i 1.71309i −0.516069 0.856547i \(-0.672605\pi\)
0.516069 0.856547i \(-0.327395\pi\)
\(644\) 0 0
\(645\) −3621.97 + 57.9663i −0.221108 + 0.00353864i
\(646\) 0 0
\(647\) 25437.8i 1.54569i 0.634595 + 0.772845i \(0.281167\pi\)
−0.634595 + 0.772845i \(0.718833\pi\)
\(648\) 0 0
\(649\) −43015.9 −2.60173
\(650\) 0 0
\(651\) 20880.0 1.25707
\(652\) 0 0
\(653\) 22647.7i 1.35723i 0.734493 + 0.678617i \(0.237420\pi\)
−0.734493 + 0.678617i \(0.762580\pi\)
\(654\) 0 0
\(655\) 1022.61 16.3659i 0.0610024 0.000976288i
\(656\) 0 0
\(657\) 2469.63i 0.146650i
\(658\) 0 0
\(659\) 25158.5 1.48716 0.743579 0.668649i \(-0.233127\pi\)
0.743579 + 0.668649i \(0.233127\pi\)
\(660\) 0 0
\(661\) 23441.0 1.37935 0.689675 0.724119i \(-0.257753\pi\)
0.689675 + 0.724119i \(0.257753\pi\)
\(662\) 0 0
\(663\) 3221.13i 0.188685i
\(664\) 0 0
\(665\) 774.329 + 48383.2i 0.0451537 + 2.82138i
\(666\) 0 0
\(667\) 7405.47i 0.429896i
\(668\) 0 0
\(669\) 14566.8 0.841829
\(670\) 0 0
\(671\) 11676.0 0.671754
\(672\) 0 0
\(673\) 3145.33i 0.180154i −0.995935 0.0900770i \(-0.971289\pi\)
0.995935 0.0900770i \(-0.0287113\pi\)
\(674\) 0 0
\(675\) −108.000 3373.27i −0.00615840 0.192352i
\(676\) 0 0
\(677\) 10606.2i 0.602109i 0.953607 + 0.301054i \(0.0973386\pi\)
−0.953607 + 0.301054i \(0.902661\pi\)
\(678\) 0 0
\(679\) −42448.1 −2.39913
\(680\) 0 0
\(681\) 19608.6 1.10338
\(682\) 0 0
\(683\) 7825.06i 0.438386i 0.975682 + 0.219193i \(0.0703424\pi\)
−0.975682 + 0.219193i \(0.929658\pi\)
\(684\) 0 0
\(685\) −406.708 25412.8i −0.0226854 1.41748i
\(686\) 0 0
\(687\) 16531.1i 0.918049i
\(688\) 0 0
\(689\) 19819.0 1.09585
\(690\) 0 0
\(691\) −22750.9 −1.25251 −0.626256 0.779618i \(-0.715413\pi\)
−0.626256 + 0.779618i \(0.715413\pi\)
\(692\) 0 0
\(693\) 14394.2i 0.789022i
\(694\) 0 0
\(695\) −8258.25 + 132.166i −0.450724 + 0.00721343i
\(696\) 0 0
\(697\) 4271.99i 0.232157i
\(698\) 0 0
\(699\) −17747.0 −0.960302
\(700\) 0 0
\(701\) −133.598 −0.00719817 −0.00359908 0.999994i \(-0.501146\pi\)
−0.00359908 + 0.999994i \(0.501146\pi\)
\(702\) 0 0
\(703\) 39382.5i 2.11286i
\(704\) 0 0
\(705\) 9356.43 149.741i 0.499835 0.00799941i
\(706\) 0 0
\(707\) 29333.1i 1.56037i
\(708\) 0 0
\(709\) −6886.26 −0.364766 −0.182383 0.983228i \(-0.558381\pi\)
−0.182383 + 0.983228i \(0.558381\pi\)
\(710\) 0 0
\(711\) −3302.92 −0.174218
\(712\) 0 0
\(713\) 14912.4i 0.783271i
\(714\) 0 0
\(715\) 522.193 + 32628.7i 0.0273131 + 1.70663i
\(716\) 0 0
\(717\) 6789.76i 0.353652i
\(718\) 0 0
\(719\) −1570.18 −0.0814436 −0.0407218 0.999171i \(-0.512966\pi\)
−0.0407218 + 0.999171i \(0.512966\pi\)
\(720\) 0 0
\(721\) 25898.3 1.33773
\(722\) 0 0
\(723\) 2317.48i 0.119209i
\(724\) 0 0
\(725\) −13056.4 + 418.019i −0.668831 + 0.0214136i
\(726\) 0 0
\(727\) 3399.18i 0.173409i −0.996234 0.0867047i \(-0.972366\pi\)
0.996234 0.0867047i \(-0.0276337\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −1921.22 −0.0972078
\(732\) 0 0
\(733\) 14152.1i 0.713125i −0.934272 0.356562i \(-0.883949\pi\)
0.934272 0.356562i \(-0.116051\pi\)
\(734\) 0 0
\(735\) −403.002 25181.2i −0.0202244 1.26370i
\(736\) 0 0
\(737\) 5021.20i 0.250961i
\(738\) 0 0
\(739\) −14919.5 −0.742655 −0.371328 0.928502i \(-0.621097\pi\)
−0.371328 + 0.928502i \(0.621097\pi\)
\(740\) 0 0
\(741\) −23695.7 −1.17474
\(742\) 0 0
\(743\) 7287.29i 0.359818i −0.983683 0.179909i \(-0.942420\pi\)
0.983683 0.179909i \(-0.0575803\pi\)
\(744\) 0 0
\(745\) −16848.3 + 269.642i −0.828555 + 0.0132603i
\(746\) 0 0
\(747\) 519.526i 0.0254464i
\(748\) 0 0
\(749\) 43045.3 2.09992
\(750\) 0 0
\(751\) −18783.4 −0.912670 −0.456335 0.889808i \(-0.650838\pi\)
−0.456335 + 0.889808i \(0.650838\pi\)
\(752\) 0 0
\(753\) 1788.58i 0.0865595i
\(754\) 0 0
\(755\) −1725.63 + 27.6172i −0.0831818 + 0.00133125i
\(756\) 0 0
\(757\) 30614.3i 1.46988i 0.678134 + 0.734939i \(0.262789\pi\)
−0.678134 + 0.734939i \(0.737211\pi\)
\(758\) 0 0
\(759\) −10280.3 −0.491634
\(760\) 0 0
\(761\) −15277.2 −0.727723 −0.363861 0.931453i \(-0.618542\pi\)
−0.363861 + 0.931453i \(0.618542\pi\)
\(762\) 0 0
\(763\) 38428.4i 1.82333i
\(764\) 0 0
\(765\) −28.6435 1789.76i −0.00135374 0.0845869i
\(766\) 0 0
\(767\) 53690.3i 2.52757i
\(768\) 0 0
\(769\) 17700.1 0.830016 0.415008 0.909818i \(-0.363779\pi\)
0.415008 + 0.909818i \(0.363779\pi\)
\(770\) 0 0
\(771\) 12417.6 0.580036
\(772\) 0 0
\(773\) 29362.5i 1.36623i 0.730310 + 0.683116i \(0.239375\pi\)
−0.730310 + 0.683116i \(0.760625\pi\)
\(774\) 0 0
\(775\) 26291.6 841.763i 1.21861 0.0390155i
\(776\) 0 0
\(777\) 29859.9i 1.37866i
\(778\) 0 0
\(779\) −31426.2 −1.44539
\(780\) 0 0
\(781\) −13424.0 −0.615042
\(782\) 0 0
\(783\) 2821.63i 0.128783i
\(784\) 0 0
\(785\) 56.4481 + 3527.10i 0.00256652 + 0.160367i
\(786\) 0 0
\(787\) 2816.92i 0.127589i −0.997963 0.0637943i \(-0.979680\pi\)
0.997963 0.0637943i \(-0.0203202\pi\)
\(788\) 0 0
\(789\) −4834.01 −0.218118
\(790\) 0 0
\(791\) 16795.0 0.754943