Properties

Label 240.3.l.c.161.1
Level $240$
Weight $3$
Character 240.161
Analytic conductor $6.540$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,3,Mod(161,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 240.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53952634465\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.1
Root \(1.58114 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 240.161
Dual form 240.3.l.c.161.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.58114 - 1.52896i) q^{3} -2.23607i q^{5} +7.48683 q^{7} +(4.32456 + 7.89292i) q^{9} -8.48528i q^{11} -10.0000 q^{13} +(-3.41886 + 5.77160i) q^{15} -30.3870i q^{17} -26.9737 q^{19} +(-19.3246 - 11.4471i) q^{21} -9.17377i q^{23} -5.00000 q^{25} +(0.905694 - 26.9848i) q^{27} -26.8328i q^{29} -8.00000 q^{31} +(-12.9737 + 21.9017i) q^{33} -16.7411i q^{35} +15.9473 q^{37} +(25.8114 + 15.2896i) q^{39} +47.3575i q^{41} +14.4605 q^{43} +(17.6491 - 9.67000i) q^{45} -45.8688i q^{47} +7.05267 q^{49} +(-46.4605 + 78.4330i) q^{51} -30.3870i q^{53} -18.9737 q^{55} +(69.6228 + 41.2417i) q^{57} +24.0789i q^{59} -53.9473 q^{61} +(32.3772 + 59.0930i) q^{63} +22.3607i q^{65} +110.460 q^{67} +(-14.0263 + 23.6788i) q^{69} -15.5936i q^{71} +87.9473 q^{73} +(12.9057 + 7.64481i) q^{75} -63.5279i q^{77} +46.9737 q^{79} +(-43.5964 + 68.2668i) q^{81} -26.1443i q^{83} -67.9473 q^{85} +(-41.0263 + 69.2592i) q^{87} +60.7739i q^{89} -74.8683 q^{91} +(20.6491 + 12.2317i) q^{93} +60.3150i q^{95} +36.0527 q^{97} +(66.9737 - 36.6951i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 8 q^{7} - 8 q^{9} - 40 q^{13} - 20 q^{15} - 32 q^{19} - 52 q^{21} - 20 q^{25} - 28 q^{27} - 32 q^{31} + 24 q^{33} - 88 q^{37} + 40 q^{39} - 56 q^{43} + 20 q^{45} + 180 q^{49} - 72 q^{51}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.58114 1.52896i −0.860380 0.509654i
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 7.48683 1.06955 0.534774 0.844995i \(-0.320397\pi\)
0.534774 + 0.844995i \(0.320397\pi\)
\(8\) 0 0
\(9\) 4.32456 + 7.89292i 0.480506 + 0.876991i
\(10\) 0 0
\(11\) 8.48528i 0.771389i −0.922627 0.385695i \(-0.873962\pi\)
0.922627 0.385695i \(-0.126038\pi\)
\(12\) 0 0
\(13\) −10.0000 −0.769231 −0.384615 0.923077i \(-0.625666\pi\)
−0.384615 + 0.923077i \(0.625666\pi\)
\(14\) 0 0
\(15\) −3.41886 + 5.77160i −0.227924 + 0.384773i
\(16\) 0 0
\(17\) 30.3870i 1.78747i −0.448596 0.893734i \(-0.648076\pi\)
0.448596 0.893734i \(-0.351924\pi\)
\(18\) 0 0
\(19\) −26.9737 −1.41967 −0.709833 0.704370i \(-0.751230\pi\)
−0.709833 + 0.704370i \(0.751230\pi\)
\(20\) 0 0
\(21\) −19.3246 11.4471i −0.920217 0.545099i
\(22\) 0 0
\(23\) 9.17377i 0.398859i −0.979912 0.199430i \(-0.936091\pi\)
0.979912 0.199430i \(-0.0639090\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 0.905694 26.9848i 0.0335442 0.999437i
\(28\) 0 0
\(29\) 26.8328i 0.925270i −0.886549 0.462635i \(-0.846904\pi\)
0.886549 0.462635i \(-0.153096\pi\)
\(30\) 0 0
\(31\) −8.00000 −0.258065 −0.129032 0.991640i \(-0.541187\pi\)
−0.129032 + 0.991640i \(0.541187\pi\)
\(32\) 0 0
\(33\) −12.9737 + 21.9017i −0.393141 + 0.663688i
\(34\) 0 0
\(35\) 16.7411i 0.478316i
\(36\) 0 0
\(37\) 15.9473 0.431009 0.215504 0.976503i \(-0.430860\pi\)
0.215504 + 0.976503i \(0.430860\pi\)
\(38\) 0 0
\(39\) 25.8114 + 15.2896i 0.661830 + 0.392041i
\(40\) 0 0
\(41\) 47.3575i 1.15506i 0.816369 + 0.577531i \(0.195984\pi\)
−0.816369 + 0.577531i \(0.804016\pi\)
\(42\) 0 0
\(43\) 14.4605 0.336291 0.168145 0.985762i \(-0.446222\pi\)
0.168145 + 0.985762i \(0.446222\pi\)
\(44\) 0 0
\(45\) 17.6491 9.67000i 0.392202 0.214889i
\(46\) 0 0
\(47\) 45.8688i 0.975933i −0.872862 0.487966i \(-0.837739\pi\)
0.872862 0.487966i \(-0.162261\pi\)
\(48\) 0 0
\(49\) 7.05267 0.143932
\(50\) 0 0
\(51\) −46.4605 + 78.4330i −0.910990 + 1.53790i
\(52\) 0 0
\(53\) 30.3870i 0.573339i −0.958030 0.286670i \(-0.907452\pi\)
0.958030 0.286670i \(-0.0925482\pi\)
\(54\) 0 0
\(55\) −18.9737 −0.344976
\(56\) 0 0
\(57\) 69.6228 + 41.2417i 1.22145 + 0.723538i
\(58\) 0 0
\(59\) 24.0789i 0.408116i 0.978959 + 0.204058i \(0.0654132\pi\)
−0.978959 + 0.204058i \(0.934587\pi\)
\(60\) 0 0
\(61\) −53.9473 −0.884382 −0.442191 0.896921i \(-0.645799\pi\)
−0.442191 + 0.896921i \(0.645799\pi\)
\(62\) 0 0
\(63\) 32.3772 + 59.0930i 0.513924 + 0.937984i
\(64\) 0 0
\(65\) 22.3607i 0.344010i
\(66\) 0 0
\(67\) 110.460 1.64866 0.824332 0.566107i \(-0.191551\pi\)
0.824332 + 0.566107i \(0.191551\pi\)
\(68\) 0 0
\(69\) −14.0263 + 23.6788i −0.203280 + 0.343171i
\(70\) 0 0
\(71\) 15.5936i 0.219628i −0.993952 0.109814i \(-0.964974\pi\)
0.993952 0.109814i \(-0.0350255\pi\)
\(72\) 0 0
\(73\) 87.9473 1.20476 0.602379 0.798210i \(-0.294220\pi\)
0.602379 + 0.798210i \(0.294220\pi\)
\(74\) 0 0
\(75\) 12.9057 + 7.64481i 0.172076 + 0.101931i
\(76\) 0 0
\(77\) 63.5279i 0.825037i
\(78\) 0 0
\(79\) 46.9737 0.594603 0.297302 0.954784i \(-0.403913\pi\)
0.297302 + 0.954784i \(0.403913\pi\)
\(80\) 0 0
\(81\) −43.5964 + 68.2668i −0.538228 + 0.842799i
\(82\) 0 0
\(83\) 26.1443i 0.314992i −0.987520 0.157496i \(-0.949658\pi\)
0.987520 0.157496i \(-0.0503421\pi\)
\(84\) 0 0
\(85\) −67.9473 −0.799380
\(86\) 0 0
\(87\) −41.0263 + 69.2592i −0.471567 + 0.796083i
\(88\) 0 0
\(89\) 60.7739i 0.682853i 0.939908 + 0.341427i \(0.110910\pi\)
−0.939908 + 0.341427i \(0.889090\pi\)
\(90\) 0 0
\(91\) −74.8683 −0.822729
\(92\) 0 0
\(93\) 20.6491 + 12.2317i 0.222033 + 0.131524i
\(94\) 0 0
\(95\) 60.3150i 0.634894i
\(96\) 0 0
\(97\) 36.0527 0.371677 0.185838 0.982580i \(-0.440500\pi\)
0.185838 + 0.982580i \(0.440500\pi\)
\(98\) 0 0
\(99\) 66.9737 36.6951i 0.676502 0.370657i
\(100\) 0 0
\(101\) 48.1577i 0.476809i −0.971166 0.238405i \(-0.923376\pi\)
0.971166 0.238405i \(-0.0766245\pi\)
\(102\) 0 0
\(103\) −140.408 −1.36318 −0.681591 0.731733i \(-0.738712\pi\)
−0.681591 + 0.731733i \(0.738712\pi\)
\(104\) 0 0
\(105\) −25.5964 + 43.2110i −0.243776 + 0.411534i
\(106\) 0 0
\(107\) 43.1149i 0.402943i 0.979494 + 0.201471i \(0.0645723\pi\)
−0.979494 + 0.201471i \(0.935428\pi\)
\(108\) 0 0
\(109\) 133.842 1.22791 0.613954 0.789342i \(-0.289578\pi\)
0.613954 + 0.789342i \(0.289578\pi\)
\(110\) 0 0
\(111\) −41.1623 24.3829i −0.370831 0.219665i
\(112\) 0 0
\(113\) 7.90852i 0.0699869i 0.999388 + 0.0349935i \(0.0111410\pi\)
−0.999388 + 0.0349935i \(0.988859\pi\)
\(114\) 0 0
\(115\) −20.5132 −0.178375
\(116\) 0 0
\(117\) −43.2456 78.9292i −0.369620 0.674609i
\(118\) 0 0
\(119\) 227.502i 1.91178i
\(120\) 0 0
\(121\) 49.0000 0.404959
\(122\) 0 0
\(123\) 72.4078 122.236i 0.588682 0.993792i
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 134.460 1.05874 0.529372 0.848390i \(-0.322428\pi\)
0.529372 + 0.848390i \(0.322428\pi\)
\(128\) 0 0
\(129\) −37.3246 22.1095i −0.289338 0.171392i
\(130\) 0 0
\(131\) 220.394i 1.68240i 0.540727 + 0.841198i \(0.318149\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(132\) 0 0
\(133\) −201.947 −1.51840
\(134\) 0 0
\(135\) −60.3399 2.02519i −0.446962 0.0150014i
\(136\) 0 0
\(137\) 95.5153i 0.697192i 0.937273 + 0.348596i \(0.113341\pi\)
−0.937273 + 0.348596i \(0.886659\pi\)
\(138\) 0 0
\(139\) 76.8157 0.552631 0.276315 0.961067i \(-0.410887\pi\)
0.276315 + 0.961067i \(0.410887\pi\)
\(140\) 0 0
\(141\) −70.1317 + 118.394i −0.497388 + 0.839673i
\(142\) 0 0
\(143\) 84.8528i 0.593376i
\(144\) 0 0
\(145\) −60.0000 −0.413793
\(146\) 0 0
\(147\) −18.2039 10.7833i −0.123836 0.0733555i
\(148\) 0 0
\(149\) 276.237i 1.85394i −0.375139 0.926969i \(-0.622405\pi\)
0.375139 0.926969i \(-0.377595\pi\)
\(150\) 0 0
\(151\) −18.0527 −0.119554 −0.0597770 0.998212i \(-0.519039\pi\)
−0.0597770 + 0.998212i \(0.519039\pi\)
\(152\) 0 0
\(153\) 239.842 131.410i 1.56759 0.858890i
\(154\) 0 0
\(155\) 17.8885i 0.115410i
\(156\) 0 0
\(157\) 103.842 0.661414 0.330707 0.943733i \(-0.392713\pi\)
0.330707 + 0.943733i \(0.392713\pi\)
\(158\) 0 0
\(159\) −46.4605 + 78.4330i −0.292204 + 0.493289i
\(160\) 0 0
\(161\) 68.6825i 0.426599i
\(162\) 0 0
\(163\) 11.3815 0.0698251 0.0349126 0.999390i \(-0.488885\pi\)
0.0349126 + 0.999390i \(0.488885\pi\)
\(164\) 0 0
\(165\) 48.9737 + 29.0100i 0.296810 + 0.175818i
\(166\) 0 0
\(167\) 252.270i 1.51060i −0.655382 0.755298i \(-0.727492\pi\)
0.655382 0.755298i \(-0.272508\pi\)
\(168\) 0 0
\(169\) −69.0000 −0.408284
\(170\) 0 0
\(171\) −116.649 212.901i −0.682159 1.24504i
\(172\) 0 0
\(173\) 11.8160i 0.0683005i 0.999417 + 0.0341502i \(0.0108725\pi\)
−0.999417 + 0.0341502i \(0.989128\pi\)
\(174\) 0 0
\(175\) −37.4342 −0.213910
\(176\) 0 0
\(177\) 36.8157 62.1509i 0.207998 0.351135i
\(178\) 0 0
\(179\) 69.0358i 0.385675i 0.981231 + 0.192837i \(0.0617690\pi\)
−0.981231 + 0.192837i \(0.938231\pi\)
\(180\) 0 0
\(181\) −189.684 −1.04798 −0.523989 0.851725i \(-0.675557\pi\)
−0.523989 + 0.851725i \(0.675557\pi\)
\(182\) 0 0
\(183\) 139.246 + 82.4834i 0.760905 + 0.450729i
\(184\) 0 0
\(185\) 35.6593i 0.192753i
\(186\) 0 0
\(187\) −257.842 −1.37883
\(188\) 0 0
\(189\) 6.78078 202.031i 0.0358771 1.06895i
\(190\) 0 0
\(191\) 108.708i 0.569153i −0.958653 0.284577i \(-0.908147\pi\)
0.958653 0.284577i \(-0.0918530\pi\)
\(192\) 0 0
\(193\) −167.947 −0.870193 −0.435097 0.900384i \(-0.643286\pi\)
−0.435097 + 0.900384i \(0.643286\pi\)
\(194\) 0 0
\(195\) 34.1886 57.7160i 0.175326 0.295980i
\(196\) 0 0
\(197\) 171.659i 0.871367i 0.900100 + 0.435684i \(0.143493\pi\)
−0.900100 + 0.435684i \(0.856507\pi\)
\(198\) 0 0
\(199\) −35.0790 −0.176276 −0.0881382 0.996108i \(-0.528092\pi\)
−0.0881382 + 0.996108i \(0.528092\pi\)
\(200\) 0 0
\(201\) −285.114 168.890i −1.41848 0.840248i
\(202\) 0 0
\(203\) 200.893i 0.989620i
\(204\) 0 0
\(205\) 105.895 0.516559
\(206\) 0 0
\(207\) 72.4078 39.6725i 0.349796 0.191654i
\(208\) 0 0
\(209\) 228.879i 1.09512i
\(210\) 0 0
\(211\) 58.1580 0.275630 0.137815 0.990458i \(-0.455992\pi\)
0.137815 + 0.990458i \(0.455992\pi\)
\(212\) 0 0
\(213\) −23.8420 + 40.2492i −0.111934 + 0.188963i
\(214\) 0 0
\(215\) 32.3347i 0.150394i
\(216\) 0 0
\(217\) −59.8947 −0.276012
\(218\) 0 0
\(219\) −227.004 134.468i −1.03655 0.614009i
\(220\) 0 0
\(221\) 303.870i 1.37498i
\(222\) 0 0
\(223\) −99.3815 −0.445657 −0.222828 0.974858i \(-0.571529\pi\)
−0.222828 + 0.974858i \(0.571529\pi\)
\(224\) 0 0
\(225\) −21.6228 39.4646i −0.0961012 0.175398i
\(226\) 0 0
\(227\) 216.951i 0.955733i 0.878432 + 0.477867i \(0.158590\pi\)
−0.878432 + 0.477867i \(0.841410\pi\)
\(228\) 0 0
\(229\) 325.684 1.42220 0.711100 0.703090i \(-0.248197\pi\)
0.711100 + 0.703090i \(0.248197\pi\)
\(230\) 0 0
\(231\) −97.1317 + 163.974i −0.420483 + 0.709845i
\(232\) 0 0
\(233\) 51.7119i 0.221939i −0.993824 0.110970i \(-0.964604\pi\)
0.993824 0.110970i \(-0.0353957\pi\)
\(234\) 0 0
\(235\) −102.566 −0.436450
\(236\) 0 0
\(237\) −121.246 71.8209i −0.511585 0.303042i
\(238\) 0 0
\(239\) 410.047i 1.71568i 0.513917 + 0.857840i \(0.328194\pi\)
−0.513917 + 0.857840i \(0.671806\pi\)
\(240\) 0 0
\(241\) 445.526 1.84866 0.924328 0.381599i \(-0.124627\pi\)
0.924328 + 0.381599i \(0.124627\pi\)
\(242\) 0 0
\(243\) 216.906 109.549i 0.892616 0.450818i
\(244\) 0 0
\(245\) 15.7702i 0.0643683i
\(246\) 0 0
\(247\) 269.737 1.09205
\(248\) 0 0
\(249\) −39.9737 + 67.4821i −0.160537 + 0.271013i
\(250\) 0 0
\(251\) 237.364i 0.945675i 0.881150 + 0.472838i \(0.156770\pi\)
−0.881150 + 0.472838i \(0.843230\pi\)
\(252\) 0 0
\(253\) −77.8420 −0.307676
\(254\) 0 0
\(255\) 175.381 + 103.889i 0.687771 + 0.407407i
\(256\) 0 0
\(257\) 318.887i 1.24080i −0.784284 0.620402i \(-0.786970\pi\)
0.784284 0.620402i \(-0.213030\pi\)
\(258\) 0 0
\(259\) 119.395 0.460985
\(260\) 0 0
\(261\) 211.789 116.040i 0.811453 0.444598i
\(262\) 0 0
\(263\) 36.2300i 0.137757i 0.997625 + 0.0688784i \(0.0219420\pi\)
−0.997625 + 0.0688784i \(0.978058\pi\)
\(264\) 0 0
\(265\) −67.9473 −0.256405
\(266\) 0 0
\(267\) 92.9210 156.866i 0.348019 0.587513i
\(268\) 0 0
\(269\) 528.041i 1.96298i 0.191518 + 0.981489i \(0.438659\pi\)
−0.191518 + 0.981489i \(0.561341\pi\)
\(270\) 0 0
\(271\) 475.895 1.75607 0.878034 0.478597i \(-0.158855\pi\)
0.878034 + 0.478597i \(0.158855\pi\)
\(272\) 0 0
\(273\) 193.246 + 114.471i 0.707859 + 0.419307i
\(274\) 0 0
\(275\) 42.4264i 0.154278i
\(276\) 0 0
\(277\) 188.158 0.679271 0.339635 0.940557i \(-0.389696\pi\)
0.339635 + 0.940557i \(0.389696\pi\)
\(278\) 0 0
\(279\) −34.5964 63.1434i −0.124002 0.226320i
\(280\) 0 0
\(281\) 24.4322i 0.0869473i −0.999055 0.0434736i \(-0.986158\pi\)
0.999055 0.0434736i \(-0.0138424\pi\)
\(282\) 0 0
\(283\) −198.460 −0.701274 −0.350637 0.936511i \(-0.614035\pi\)
−0.350637 + 0.936511i \(0.614035\pi\)
\(284\) 0 0
\(285\) 92.2192 155.681i 0.323576 0.546250i
\(286\) 0 0
\(287\) 354.558i 1.23539i
\(288\) 0 0
\(289\) −634.368 −2.19504
\(290\) 0 0
\(291\) −93.0569 55.1231i −0.319783 0.189427i
\(292\) 0 0
\(293\) 513.825i 1.75367i 0.480794 + 0.876834i \(0.340349\pi\)
−0.480794 + 0.876834i \(0.659651\pi\)
\(294\) 0 0
\(295\) 53.8420 0.182515
\(296\) 0 0
\(297\) −228.974 7.68507i −0.770955 0.0258757i
\(298\) 0 0
\(299\) 91.7377i 0.306815i
\(300\) 0 0
\(301\) 108.263 0.359679
\(302\) 0 0
\(303\) −73.6313 + 124.302i −0.243008 + 0.410237i
\(304\) 0 0
\(305\) 120.630i 0.395508i
\(306\) 0 0
\(307\) 11.3815 0.0370733 0.0185366 0.999828i \(-0.494099\pi\)
0.0185366 + 0.999828i \(0.494099\pi\)
\(308\) 0 0
\(309\) 362.412 + 214.678i 1.17285 + 0.694751i
\(310\) 0 0
\(311\) 518.756i 1.66802i −0.551746 0.834012i \(-0.686038\pi\)
0.551746 0.834012i \(-0.313962\pi\)
\(312\) 0 0
\(313\) −46.3160 −0.147974 −0.0739872 0.997259i \(-0.523572\pi\)
−0.0739872 + 0.997259i \(0.523572\pi\)
\(314\) 0 0
\(315\) 132.136 72.3977i 0.419479 0.229834i
\(316\) 0 0
\(317\) 39.0957i 0.123330i −0.998097 0.0616651i \(-0.980359\pi\)
0.998097 0.0616651i \(-0.0196411\pi\)
\(318\) 0 0
\(319\) −227.684 −0.713743
\(320\) 0 0
\(321\) 65.9210 111.286i 0.205361 0.346684i
\(322\) 0 0
\(323\) 819.648i 2.53761i
\(324\) 0 0
\(325\) 50.0000 0.153846
\(326\) 0 0
\(327\) −345.465 204.639i −1.05647 0.625808i
\(328\) 0 0
\(329\) 343.412i 1.04381i
\(330\) 0 0
\(331\) 445.421 1.34568 0.672841 0.739787i \(-0.265074\pi\)
0.672841 + 0.739787i \(0.265074\pi\)
\(332\) 0 0
\(333\) 68.9651 + 125.871i 0.207102 + 0.377991i
\(334\) 0 0
\(335\) 246.997i 0.737305i
\(336\) 0 0
\(337\) 325.684 0.966421 0.483211 0.875504i \(-0.339471\pi\)
0.483211 + 0.875504i \(0.339471\pi\)
\(338\) 0 0
\(339\) 12.0918 20.4130i 0.0356691 0.0602153i
\(340\) 0 0
\(341\) 67.8823i 0.199068i
\(342\) 0 0
\(343\) −314.053 −0.915605
\(344\) 0 0
\(345\) 52.9473 + 31.3638i 0.153471 + 0.0909097i
\(346\) 0 0
\(347\) 51.8236i 0.149348i −0.997208 0.0746738i \(-0.976208\pi\)
0.997208 0.0746738i \(-0.0237916\pi\)
\(348\) 0 0
\(349\) −97.5787 −0.279595 −0.139798 0.990180i \(-0.544645\pi\)
−0.139798 + 0.990180i \(0.544645\pi\)
\(350\) 0 0
\(351\) −9.05694 + 269.848i −0.0258033 + 0.768798i
\(352\) 0 0
\(353\) 569.797i 1.61416i −0.590445 0.807078i \(-0.701048\pi\)
0.590445 0.807078i \(-0.298952\pi\)
\(354\) 0 0
\(355\) −34.8683 −0.0982206
\(356\) 0 0
\(357\) −347.842 + 587.215i −0.974347 + 1.64486i
\(358\) 0 0
\(359\) 274.283i 0.764019i −0.924158 0.382010i \(-0.875232\pi\)
0.924158 0.382010i \(-0.124768\pi\)
\(360\) 0 0
\(361\) 366.579 1.01545
\(362\) 0 0
\(363\) −126.476 74.9191i −0.348418 0.206389i
\(364\) 0 0
\(365\) 196.656i 0.538784i
\(366\) 0 0
\(367\) −461.828 −1.25839 −0.629194 0.777248i \(-0.716615\pi\)
−0.629194 + 0.777248i \(0.716615\pi\)
\(368\) 0 0
\(369\) −373.789 + 204.800i −1.01298 + 0.555014i
\(370\) 0 0
\(371\) 227.502i 0.613213i
\(372\) 0 0
\(373\) −491.947 −1.31889 −0.659447 0.751751i \(-0.729209\pi\)
−0.659447 + 0.751751i \(0.729209\pi\)
\(374\) 0 0
\(375\) 17.0943 28.8580i 0.0455848 0.0769547i
\(376\) 0 0
\(377\) 268.328i 0.711746i
\(378\) 0 0
\(379\) 258.763 0.682752 0.341376 0.939927i \(-0.389107\pi\)
0.341376 + 0.939927i \(0.389107\pi\)
\(380\) 0 0
\(381\) −347.061 205.585i −0.910922 0.539593i
\(382\) 0 0
\(383\) 522.422i 1.36402i −0.731341 0.682012i \(-0.761105\pi\)
0.731341 0.682012i \(-0.238895\pi\)
\(384\) 0 0
\(385\) −142.053 −0.368968
\(386\) 0 0
\(387\) 62.5352 + 114.136i 0.161590 + 0.294924i
\(388\) 0 0
\(389\) 610.847i 1.57030i −0.619306 0.785150i \(-0.712586\pi\)
0.619306 0.785150i \(-0.287414\pi\)
\(390\) 0 0
\(391\) −278.763 −0.712949
\(392\) 0 0
\(393\) 336.974 568.867i 0.857439 1.44750i
\(394\) 0 0
\(395\) 105.036i 0.265915i
\(396\) 0 0
\(397\) −214.000 −0.539043 −0.269521 0.962994i \(-0.586865\pi\)
−0.269521 + 0.962994i \(0.586865\pi\)
\(398\) 0 0
\(399\) 521.254 + 308.770i 1.30640 + 0.773859i
\(400\) 0 0
\(401\) 454.557i 1.13356i −0.823869 0.566780i \(-0.808189\pi\)
0.823869 0.566780i \(-0.191811\pi\)
\(402\) 0 0
\(403\) 80.0000 0.198511
\(404\) 0 0
\(405\) 152.649 + 97.4846i 0.376911 + 0.240703i
\(406\) 0 0
\(407\) 135.318i 0.332476i
\(408\) 0 0
\(409\) −573.842 −1.40304 −0.701518 0.712651i \(-0.747494\pi\)
−0.701518 + 0.712651i \(0.747494\pi\)
\(410\) 0 0
\(411\) 146.039 246.538i 0.355326 0.599850i
\(412\) 0 0
\(413\) 180.274i 0.436500i
\(414\) 0 0
\(415\) −58.4605 −0.140869
\(416\) 0 0
\(417\) −198.272 117.448i −0.475472 0.281650i
\(418\) 0 0
\(419\) 97.9159i 0.233690i 0.993150 + 0.116845i \(0.0372780\pi\)
−0.993150 + 0.116845i \(0.962722\pi\)
\(420\) 0 0
\(421\) 717.315 1.70384 0.851918 0.523675i \(-0.175439\pi\)
0.851918 + 0.523675i \(0.175439\pi\)
\(422\) 0 0
\(423\) 362.039 198.362i 0.855885 0.468942i
\(424\) 0 0
\(425\) 151.935i 0.357494i
\(426\) 0 0
\(427\) −403.895 −0.945889
\(428\) 0 0
\(429\) 129.737 219.017i 0.302416 0.510529i
\(430\) 0 0
\(431\) 293.077i 0.679994i 0.940427 + 0.339997i \(0.110426\pi\)
−0.940427 + 0.339997i \(0.889574\pi\)
\(432\) 0 0
\(433\) 487.526 1.12593 0.562963 0.826482i \(-0.309661\pi\)
0.562963 + 0.826482i \(0.309661\pi\)
\(434\) 0 0
\(435\) 154.868 + 91.7377i 0.356019 + 0.210891i
\(436\) 0 0
\(437\) 247.450i 0.566247i
\(438\) 0 0
\(439\) −257.237 −0.585961 −0.292981 0.956118i \(-0.594647\pi\)
−0.292981 + 0.956118i \(0.594647\pi\)
\(440\) 0 0
\(441\) 30.4997 + 55.6662i 0.0691602 + 0.126227i
\(442\) 0 0
\(443\) 293.096i 0.661615i −0.943698 0.330808i \(-0.892679\pi\)
0.943698 0.330808i \(-0.107321\pi\)
\(444\) 0 0
\(445\) 135.895 0.305381
\(446\) 0 0
\(447\) −422.355 + 713.005i −0.944866 + 1.59509i
\(448\) 0 0
\(449\) 585.614i 1.30426i 0.758106 + 0.652132i \(0.226125\pi\)
−0.758106 + 0.652132i \(0.773875\pi\)
\(450\) 0 0
\(451\) 401.842 0.891002
\(452\) 0 0
\(453\) 46.5964 + 27.6018i 0.102862 + 0.0609312i
\(454\) 0 0
\(455\) 167.411i 0.367936i
\(456\) 0 0
\(457\) −813.052 −1.77911 −0.889554 0.456831i \(-0.848984\pi\)
−0.889554 + 0.456831i \(0.848984\pi\)
\(458\) 0 0
\(459\) −819.986 27.5213i −1.78646 0.0599593i
\(460\) 0 0
\(461\) 554.074i 1.20190i −0.799288 0.600948i \(-0.794790\pi\)
0.799288 0.600948i \(-0.205210\pi\)
\(462\) 0 0
\(463\) 449.723 0.971324 0.485662 0.874147i \(-0.338579\pi\)
0.485662 + 0.874147i \(0.338579\pi\)
\(464\) 0 0
\(465\) 27.3509 46.1728i 0.0588191 0.0992964i
\(466\) 0 0
\(467\) 30.7221i 0.0657862i −0.999459 0.0328931i \(-0.989528\pi\)
0.999459 0.0328931i \(-0.0104721\pi\)
\(468\) 0 0
\(469\) 826.999 1.76332
\(470\) 0 0
\(471\) −268.031 158.770i −0.569067 0.337092i
\(472\) 0 0
\(473\) 122.701i 0.259411i
\(474\) 0 0
\(475\) 134.868 0.283933
\(476\) 0 0
\(477\) 239.842 131.410i 0.502813 0.275493i
\(478\) 0 0
\(479\) 735.242i 1.53495i −0.641078 0.767476i \(-0.721512\pi\)
0.641078 0.767476i \(-0.278488\pi\)
\(480\) 0 0
\(481\) −159.473 −0.331545
\(482\) 0 0
\(483\) −105.013 + 177.279i −0.217418 + 0.367037i
\(484\) 0 0
\(485\) 80.6162i 0.166219i
\(486\) 0 0
\(487\) 92.6185 0.190182 0.0950909 0.995469i \(-0.469686\pi\)
0.0950909 + 0.995469i \(0.469686\pi\)
\(488\) 0 0
\(489\) −29.3772 17.4019i −0.0600761 0.0355866i
\(490\) 0 0
\(491\) 898.323i 1.82958i −0.403933 0.914789i \(-0.632357\pi\)
0.403933 0.914789i \(-0.367643\pi\)
\(492\) 0 0
\(493\) −815.368 −1.65389
\(494\) 0 0
\(495\) −82.0527 149.758i −0.165763 0.302541i
\(496\) 0 0
\(497\) 116.747i 0.234903i
\(498\) 0 0
\(499\) −136.921 −0.274391 −0.137195 0.990544i \(-0.543809\pi\)
−0.137195 + 0.990544i \(0.543809\pi\)
\(500\) 0 0
\(501\) −385.710 + 651.143i −0.769881 + 1.29969i
\(502\) 0 0
\(503\) 443.077i 0.880868i −0.897785 0.440434i \(-0.854825\pi\)
0.897785 0.440434i \(-0.145175\pi\)
\(504\) 0 0
\(505\) −107.684 −0.213236
\(506\) 0 0
\(507\) 178.099 + 105.498i 0.351279 + 0.208083i
\(508\) 0 0
\(509\) 213.062i 0.418590i −0.977853 0.209295i \(-0.932883\pi\)
0.977853 0.209295i \(-0.0671168\pi\)
\(510\) 0 0
\(511\) 658.447 1.28855
\(512\) 0 0
\(513\) −24.4299 + 727.879i −0.0476216 + 1.41887i
\(514\) 0 0
\(515\) 313.961i 0.609634i
\(516\) 0 0
\(517\) −389.210 −0.752824
\(518\) 0 0
\(519\) 18.0662 30.4987i 0.0348096 0.0587643i
\(520\) 0 0
\(521\) 3.20085i 0.00614366i −0.999995 0.00307183i \(-0.999022\pi\)
0.999995 0.00307183i \(-0.000977795\pi\)
\(522\) 0 0
\(523\) −966.644 −1.84827 −0.924134 0.382069i \(-0.875212\pi\)
−0.924134 + 0.382069i \(0.875212\pi\)
\(524\) 0 0
\(525\) 96.6228 + 57.2354i 0.184043 + 0.109020i
\(526\) 0 0
\(527\) 243.096i 0.461282i
\(528\) 0 0
\(529\) 444.842 0.840911
\(530\) 0 0
\(531\) −190.053 + 104.130i −0.357915 + 0.196102i
\(532\) 0 0
\(533\) 473.575i 0.888509i
\(534\) 0 0
\(535\) 96.4078 0.180202
\(536\) 0 0
\(537\) 105.553 178.191i 0.196561 0.331827i
\(538\) 0 0
\(539\) 59.8439i 0.111028i
\(540\) 0 0
\(541\) −186.105 −0.344002 −0.172001 0.985097i \(-0.555023\pi\)
−0.172001 + 0.985097i \(0.555023\pi\)
\(542\) 0 0
\(543\) 489.601 + 290.019i 0.901659 + 0.534106i
\(544\) 0 0
\(545\) 299.280i 0.549137i
\(546\) 0 0
\(547\) 309.434 0.565693 0.282847 0.959165i \(-0.408721\pi\)
0.282847 + 0.959165i \(0.408721\pi\)
\(548\) 0 0
\(549\) −233.298 425.802i −0.424951 0.775596i
\(550\) 0 0
\(551\) 723.779i 1.31357i
\(552\) 0 0
\(553\) 351.684 0.635957
\(554\) 0 0
\(555\) −54.5217 + 92.0417i −0.0982373 + 0.165841i
\(556\) 0 0
\(557\) 4.00106i 0.00718323i −0.999994 0.00359161i \(-0.998857\pi\)
0.999994 0.00359161i \(-0.00114325\pi\)
\(558\) 0 0
\(559\) −144.605 −0.258685
\(560\) 0 0
\(561\) 665.526 + 394.230i 1.18632 + 0.702728i
\(562\) 0 0
\(563\) 166.970i 0.296572i −0.988945 0.148286i \(-0.952624\pi\)
0.988945 0.148286i \(-0.0473756\pi\)
\(564\) 0 0
\(565\) 17.6840 0.0312991
\(566\) 0 0
\(567\) −326.399 + 511.102i −0.575660 + 0.901414i
\(568\) 0 0
\(569\) 156.289i 0.274673i 0.990524 + 0.137337i \(0.0438542\pi\)
−0.990524 + 0.137337i \(0.956146\pi\)
\(570\) 0 0
\(571\) 144.105 0.252374 0.126187 0.992006i \(-0.459726\pi\)
0.126187 + 0.992006i \(0.459726\pi\)
\(572\) 0 0
\(573\) −166.211 + 280.591i −0.290071 + 0.489688i
\(574\) 0 0
\(575\) 45.8688i 0.0797719i
\(576\) 0 0
\(577\) 532.947 0.923651 0.461826 0.886971i \(-0.347195\pi\)
0.461826 + 0.886971i \(0.347195\pi\)
\(578\) 0 0
\(579\) 433.495 + 256.785i 0.748697 + 0.443497i
\(580\) 0 0
\(581\) 195.738i 0.336899i
\(582\) 0 0
\(583\) −257.842 −0.442268
\(584\) 0 0
\(585\) −176.491 + 96.7000i −0.301694 + 0.165299i
\(586\) 0 0
\(587\) 190.342i 0.324262i −0.986769 0.162131i \(-0.948163\pi\)
0.986769 0.162131i \(-0.0518368\pi\)
\(588\) 0 0
\(589\) 215.789 0.366366
\(590\) 0 0
\(591\) 262.460 443.077i 0.444096 0.749707i
\(592\) 0 0
\(593\) 345.719i 0.583001i 0.956571 + 0.291500i \(0.0941544\pi\)
−0.956571 + 0.291500i \(0.905846\pi\)
\(594\) 0 0
\(595\) −508.710 −0.854975
\(596\) 0 0
\(597\) 90.5438 + 53.6344i 0.151665 + 0.0898399i
\(598\) 0 0
\(599\) 704.055i 1.17538i 0.809085 + 0.587692i \(0.199963\pi\)
−0.809085 + 0.587692i \(0.800037\pi\)
\(600\) 0 0
\(601\) 338.474 0.563185 0.281592 0.959534i \(-0.409137\pi\)
0.281592 + 0.959534i \(0.409137\pi\)
\(602\) 0 0
\(603\) 477.693 + 871.856i 0.792193 + 1.44586i
\(604\) 0 0
\(605\) 109.567i 0.181103i
\(606\) 0 0
\(607\) 816.513 1.34516 0.672581 0.740024i \(-0.265186\pi\)
0.672581 + 0.740024i \(0.265186\pi\)
\(608\) 0 0
\(609\) −307.157 + 518.532i −0.504363 + 0.851449i
\(610\) 0 0
\(611\) 458.688i 0.750717i
\(612\) 0 0
\(613\) −229.263 −0.374001 −0.187001 0.982360i \(-0.559877\pi\)
−0.187001 + 0.982360i \(0.559877\pi\)
\(614\) 0 0
\(615\) −273.329 161.909i −0.444437 0.263266i
\(616\) 0 0
\(617\) 1072.25i 1.73785i 0.494945 + 0.868924i \(0.335188\pi\)
−0.494945 + 0.868924i \(0.664812\pi\)
\(618\) 0 0
\(619\) 80.7103 0.130388 0.0651941 0.997873i \(-0.479233\pi\)
0.0651941 + 0.997873i \(0.479233\pi\)
\(620\) 0 0
\(621\) −247.552 8.30863i −0.398635 0.0133794i
\(622\) 0 0
\(623\) 455.004i 0.730344i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 349.947 590.769i 0.558130 0.942215i
\(628\) 0 0
\(629\) 484.591i 0.770415i
\(630\) 0 0
\(631\) −492.894 −0.781131 −0.390566 0.920575i \(-0.627721\pi\)
−0.390566 + 0.920575i \(0.627721\pi\)
\(632\) 0 0
\(633\) −150.114 88.9213i −0.237147 0.140476i
\(634\) 0 0
\(635\) 300.663i 0.473485i
\(636\) 0 0
\(637\) −70.5267 −0.110717
\(638\) 0 0
\(639\) 123.079 67.4353i 0.192612 0.105533i
\(640\) 0 0
\(641\) 65.4816i 0.102155i −0.998695 0.0510777i \(-0.983734\pi\)
0.998695 0.0510777i \(-0.0162656\pi\)
\(642\) 0 0
\(643\) 428.619 0.666592 0.333296 0.942822i \(-0.391839\pi\)
0.333296 + 0.942822i \(0.391839\pi\)
\(644\) 0 0
\(645\) −49.4384 + 83.4602i −0.0766487 + 0.129396i
\(646\) 0 0
\(647\) 462.801i 0.715303i −0.933855 0.357652i \(-0.883578\pi\)
0.933855 0.357652i \(-0.116422\pi\)
\(648\) 0 0
\(649\) 204.316 0.314817
\(650\) 0 0
\(651\) 154.596 + 91.5766i 0.237475 + 0.140671i
\(652\) 0 0
\(653\) 425.064i 0.650941i 0.945552 + 0.325470i \(0.105523\pi\)
−0.945552 + 0.325470i \(0.894477\pi\)
\(654\) 0 0
\(655\) 492.816 0.752390
\(656\) 0 0
\(657\) 380.333 + 694.161i 0.578894 + 1.05656i
\(658\) 0 0
\(659\) 182.769i 0.277343i 0.990338 + 0.138671i \(0.0442831\pi\)
−0.990338 + 0.138671i \(0.955717\pi\)
\(660\) 0 0
\(661\) −482.053 −0.729278 −0.364639 0.931149i \(-0.618808\pi\)
−0.364639 + 0.931149i \(0.618808\pi\)
\(662\) 0 0
\(663\) 464.605 784.330i 0.700762 1.18300i
\(664\) 0 0
\(665\) 451.568i 0.679050i
\(666\) 0 0
\(667\) −246.158 −0.369052
\(668\) 0 0
\(669\) 256.517 + 151.950i 0.383434 + 0.227131i
\(670\) 0 0
\(671\) 457.758i 0.682203i
\(672\) 0 0
\(673\) 184.579 0.274264 0.137132 0.990553i \(-0.456212\pi\)
0.137132 + 0.990553i \(0.456212\pi\)
\(674\) 0 0
\(675\) −4.52847 + 134.924i −0.00670885 + 0.199887i
\(676\) 0 0
\(677\) 1065.85i 1.57437i −0.616715 0.787187i \(-0.711537\pi\)
0.616715 0.787187i \(-0.288463\pi\)
\(678\) 0 0
\(679\) 269.920 0.397526
\(680\) 0 0
\(681\) 331.710 559.982i 0.487093 0.822293i
\(682\) 0 0
\(683\) 788.926i 1.15509i 0.816359 + 0.577545i \(0.195989\pi\)
−0.816359 + 0.577545i \(0.804011\pi\)
\(684\) 0 0
\(685\) 213.579 0.311794
\(686\) 0 0
\(687\) −840.636 497.958i −1.22363 0.724830i
\(688\) 0 0
\(689\) 303.870i 0.441030i
\(690\) 0 0
\(691\) −932.000 −1.34877 −0.674385 0.738380i \(-0.735591\pi\)
−0.674385 + 0.738380i \(0.735591\pi\)
\(692\) 0 0
\(693\) 501.421 274.730i 0.723551 0.396436i
\(694\) 0 0
\(695\) 171.765i 0.247144i
\(696\) 0 0
\(697\) 1439.05 2.06464
\(698\) 0 0
\(699\) −79.0655 + 133.476i −0.113112 + 0.190952i
\(700\) 0 0
\(701\) 1352.75i 1.92974i 0.262721 + 0.964872i \(0.415380\pi\)
−0.262721 + 0.964872i \(0.584620\pi\)
\(702\) 0 0
\(703\) −430.158 −0.611889
\(704\) 0 0
\(705\) 264.737 + 156.819i 0.375513 + 0.222439i
\(706\) 0 0
\(707\) 360.549i 0.509970i
\(708\) 0 0
\(709\) −269.473 −0.380075 −0.190038 0.981777i \(-0.560861\pi\)
−0.190038 + 0.981777i \(0.560861\pi\)
\(710\) 0 0
\(711\) 203.140 + 370.759i 0.285711 + 0.521462i
\(712\) 0 0
\(713\) 73.3901i 0.102931i
\(714\) 0 0
\(715\) 189.737 0.265366
\(716\) 0 0
\(717\) 626.947 1058.39i 0.874403 1.47614i
\(718\) 0 0
\(719\) 537.103i 0.747014i 0.927627 + 0.373507i \(0.121845\pi\)
−0.927627 + 0.373507i \(0.878155\pi\)
\(720\) 0 0
\(721\) −1051.21 −1.45799
\(722\) 0 0
\(723\) −1149.96 681.192i −1.59055 0.942174i
\(724\) 0 0
\(725\) 134.164i 0.185054i
\(726\) 0 0
\(727\) 1117.83 1.53759 0.768795 0.639495i \(-0.220856\pi\)
0.768795 + 0.639495i \(0.220856\pi\)
\(728\) 0 0
\(729\) −727.359 48.8800i −0.997750 0.0670507i
\(730\) 0 0
\(731\) 439.411i 0.601109i
\(732\) 0 0
\(733\) 7.52599 0.0102674 0.00513369 0.999987i \(-0.498366\pi\)
0.00513369 + 0.999987i \(0.498366\pi\)
\(734\) 0 0
\(735\) −24.1121 + 40.7052i −0.0328056 + 0.0553812i
\(736\) 0 0
\(737\) 937.288i 1.27176i
\(738\) 0 0
\(739\) 823.079 1.11377 0.556887 0.830588i \(-0.311996\pi\)
0.556887 + 0.830588i \(0.311996\pi\)
\(740\) 0 0
\(741\) −696.228 412.417i −0.939579 0.556568i
\(742\) 0 0
\(743\) 3.21898i 0.00433241i 0.999998 + 0.00216620i \(0.000689524\pi\)
−0.999998 + 0.00216620i \(0.999310\pi\)
\(744\) 0 0
\(745\) −617.684 −0.829106
\(746\) 0 0
\(747\) 206.355 113.063i 0.276245 0.151356i
\(748\) 0 0
\(749\) 322.794i 0.430967i
\(750\) 0 0
\(751\) −1185.63 −1.57874 −0.789368 0.613920i \(-0.789592\pi\)
−0.789368 + 0.613920i \(0.789592\pi\)
\(752\) 0 0
\(753\) 362.921 612.671i 0.481967 0.813639i
\(754\) 0 0
\(755\) 40.3670i 0.0534662i
\(756\) 0 0
\(757\) −863.315 −1.14044 −0.570221 0.821491i \(-0.693143\pi\)
−0.570221 + 0.821491i \(0.693143\pi\)
\(758\) 0 0
\(759\) 200.921 + 119.017i 0.264718 + 0.156808i
\(760\) 0 0
\(761\) 570.597i 0.749800i 0.927065 + 0.374900i \(0.122323\pi\)
−0.927065 + 0.374900i \(0.877677\pi\)
\(762\) 0 0
\(763\) 1002.05 1.31331
\(764\) 0 0
\(765\) −293.842 536.303i −0.384107 0.701050i
\(766\) 0 0
\(767\) 240.789i 0.313936i
\(768\) 0 0
\(769\) −741.684 −0.964479 −0.482239 0.876040i \(-0.660176\pi\)
−0.482239 + 0.876040i \(0.660176\pi\)
\(770\) 0 0
\(771\) −487.565 + 823.090i −0.632380 + 1.06756i
\(772\) 0 0
\(773\) 623.203i 0.806214i −0.915153 0.403107i \(-0.867930\pi\)
0.915153 0.403107i \(-0.132070\pi\)
\(774\) 0 0
\(775\) 40.0000 0.0516129
\(776\) 0 0
\(777\) −308.175 182.550i −0.396622 0.234943i
\(778\) 0 0
\(779\) 1277.41i 1.63980i
\(780\) 0 0
\(781\) −132.316 −0.169419
\(782\) 0 0
\(783\) −724.078 24.3023i −0.924749 0.0310375i
\(784\) 0 0
\(785\) 232.198i 0.295793i
\(786\) 0 0
\(787\) −335.303 −0.426052 −0.213026 0.977046i \(-0.568332\pi\)
−0.213026 + 0.977046i \(0.568332\pi\)
\(788\) 0 0
\(789\) 55.3943 93.5147i 0.0702083 0.118523i
\(790\) 0 0
\(791\) 59.2098i 0.0748543i
\(792\) 0 0
\(793\) 539.473 0.680294
\(794\) 0 0
\(795\) 175.381 + 103.889i 0.220606 + 0.130678i
\(796\) 0 0
\(797\) 550.520i 0.690740i −0.938467 0.345370i \(-0.887753\pi\)
0.938467 0.345370i \(-0.112247\pi\)
\(798\) 0 0
\(799\) −1393.81 −1.74445
\(800\) 0 0
\(801\) −479.684 + 262.820i −0.598856 + 0.328115i
\(802\) 0 0
\(803\) 746.258i 0.929337i
\(804\) 0 0
\(805\) −153.579 −0.190781
\(806\) 0 0
\(807\) 807.354 1362.95i 1.00044 1.68891i
\(808\) 0 0
\(809\) 560.288i 0.692569i 0.938130 + 0.346284i \(0.112557\pi\)
−0.938130 + 0.346284i \(0.887443\pi\)
\(810\) 0 0
\(811\) 237.842 0.293270 0.146635 0.989191i \(-0.453156\pi\)
0.146635 + 0.989191i \(0.453156\pi\)
\(812\) 0 0
\(813\) −1228.35 727.624i −1.51089 0.894987i
\(814\) 0 0
\(815\) 25.4498i 0.0312267i
\(816\) 0 0
\(817\) −390.053 −0.477421
\(818\) 0 0
\(819\) −323.772 590.930i −0.395326 0.721526i
\(820\) 0 0
\(821\) 65.4816i 0.0797584i −0.999205 0.0398792i \(-0.987303\pi\)
0.999205 0.0398792i \(-0.0126973\pi\)
\(822\) 0 0
\(823\) −521.512 −0.633673 −0.316836 0.948480i \(-0.602621\pi\)
−0.316836 + 0.948480i \(0.602621\pi\)
\(824\) 0 0
\(825\) 64.8683 109.508i 0.0786283 0.132738i
\(826\) 0 0
\(827\) 987.512i 1.19409i 0.802208 + 0.597045i \(0.203658\pi\)
−0.802208 + 0.597045i \(0.796342\pi\)
\(828\) 0 0
\(829\) 333.631 0.402450 0.201225 0.979545i \(-0.435508\pi\)
0.201225 + 0.979545i \(0.435508\pi\)
\(830\) 0 0
\(831\) −485.662 287.686i −0.584431 0.346193i
\(832\) 0 0
\(833\) 214.309i 0.257274i
\(834\) 0 0
\(835\) −564.092 −0.675559
\(836\) 0 0
\(837\) −7.24555 + 215.878i −0.00865657 + 0.257919i
\(838\) 0 0
\(839\) 129.363i 0.154187i −0.997024 0.0770934i \(-0.975436\pi\)
0.997024 0.0770934i \(-0.0245640\pi\)
\(840\) 0 0
\(841\) 121.000 0.143876
\(842\) 0 0
\(843\) −37.3559 + 63.0629i −0.0443130 + 0.0748077i
\(844\) 0 0
\(845\) 154.289i 0.182590i
\(846\) 0 0
\(847\) 366.855 0.433123
\(848\) 0 0
\(849\) 512.254 + 303.438i 0.603362 + 0.357407i
\(850\) 0 0
\(851\) 146.297i 0.171912i
\(852\) 0 0
\(853\) 1080.42 1.26661 0.633306 0.773902i \(-0.281697\pi\)
0.633306 + 0.773902i \(0.281697\pi\)
\(854\) 0 0
\(855\) −476.061 + 260.835i −0.556797 + 0.305071i
\(856\) 0 0
\(857\) 702.548i 0.819776i −0.912136 0.409888i \(-0.865568\pi\)
0.912136 0.409888i \(-0.134432\pi\)
\(858\) 0 0
\(859\) 281.132 0.327278 0.163639 0.986520i \(-0.447677\pi\)
0.163639 + 0.986520i \(0.447677\pi\)
\(860\) 0 0
\(861\) 542.105 915.163i 0.629623 1.06291i
\(862\) 0 0
\(863\) 419.221i 0.485772i 0.970055 + 0.242886i \(0.0780941\pi\)
−0.970055 + 0.242886i \(0.921906\pi\)
\(864\) 0 0
\(865\) 26.4213 0.0305449
\(866\) 0 0
\(867\) 1637.39 + 969.924i 1.88857 + 1.11871i
\(868\) 0 0
\(869\) 398.585i 0.458671i
\(870\) 0 0
\(871\) −1104.60 −1.26820
\(872\) 0 0
\(873\) 155.912 + 284.561i 0.178593 + 0.325958i
\(874\) 0 0
\(875\) 83.7053i 0.0956632i
\(876\) 0 0
\(877\) 1079.42 1.23081 0.615405 0.788211i \(-0.288992\pi\)
0.615405 + 0.788211i \(0.288992\pi\)
\(878\) 0 0
\(879\) 785.618 1326.25i 0.893763 1.50882i
\(880\) 0 0
\(881\) 748.212i 0.849275i 0.905363 + 0.424638i \(0.139599\pi\)
−0.905363 + 0.424638i \(0.860401\pi\)
\(882\) 0 0
\(883\) 875.749 0.991788 0.495894 0.868383i \(-0.334840\pi\)
0.495894 + 0.868383i \(0.334840\pi\)
\(884\) 0 0
\(885\) −138.974 82.3223i −0.157032 0.0930196i
\(886\) 0 0
\(887\) 1015.05i 1.14436i 0.820127 + 0.572182i \(0.193903\pi\)
−0.820127 + 0.572182i \(0.806097\pi\)
\(888\) 0 0
\(889\) 1006.68 1.13238
\(890\) 0 0
\(891\) 579.263 + 369.928i 0.650126 + 0.415183i
\(892\) 0 0
\(893\) 1237.25i 1.38550i
\(894\) 0 0
\(895\) 154.369 0.172479
\(896\) 0 0
\(897\) 140.263 236.788i 0.156369 0.263977i
\(898\) 0 0
\(899\) 214.663i 0.238779i
\(900\) 0 0
\(901\) −923.368 −1.02483
\(902\) 0 0
\(903\) −279.443 165.530i −0.309460 0.183312i
\(904\) 0 0
\(905\) 424.146i 0.468670i
\(906\) 0 0
\(907\) −1504.70 −1.65898 −0.829491 0.558520i \(-0.811369\pi\)
−0.829491 + 0.558520i \(0.811369\pi\)
\(908\) 0 0
\(909\) 380.105 208.261i 0.418158 0.229110i
\(910\) 0 0
\(911\) 1002.19i 1.10010i −0.835131 0.550051i \(-0.814608\pi\)
0.835131 0.550051i \(-0.185392\pi\)
\(912\) 0 0
\(913\) −221.842 −0.242981
\(914\) 0 0
\(915\) 184.438 311.363i 0.201572 0.340287i
\(916\) 0 0
\(917\) 1650.05i 1.79940i
\(918\) 0 0
\(919\) 780.289 0.849063 0.424532 0.905413i \(-0.360439\pi\)
0.424532 + 0.905413i \(0.360439\pi\)
\(920\) 0 0
\(921\) −29.3772 17.4019i −0.0318971 0.0188945i
\(922\) 0 0
\(923\) 155.936i 0.168945i
\(924\) 0 0
\(925\) −79.7367 −0.0862018
\(926\) 0 0
\(927\) −607.201 1108.23i −0.655018 1.19550i
\(928\) 0 0
\(929\) 1093.84i 1.17744i −0.808339 0.588718i \(-0.799633\pi\)
0.808339 0.588718i \(-0.200367\pi\)
\(930\) 0 0
\(931\) −190.236 −0.204335
\(932\) 0 0
\(933\) −793.157 + 1338.98i −0.850115 + 1.43513i
\(934\) 0 0
\(935\) 576.552i 0.616633i
\(936\) 0 0
\(937\) −407.947 −0.435376 −0.217688 0.976018i \(-0.569852\pi\)
−0.217688 + 0.976018i \(0.569852\pi\)
\(938\) 0 0
\(939\) 119.548 + 70.8154i 0.127314 + 0.0754157i
\(940\) 0 0
\(941\) 671.008i 0.713079i −0.934280 0.356540i \(-0.883956\pi\)
0.934280 0.356540i \(-0.116044\pi\)
\(942\) 0 0
\(943\) 434.447 0.460707
\(944\) 0 0
\(945\) −451.754 15.1623i −0.478047 0.0160447i
\(946\) 0 0
\(947\) 1608.13i 1.69813i −0.528290 0.849064i \(-0.677167\pi\)
0.528290 0.849064i \(-0.322833\pi\)
\(948\) 0 0
\(949\) −879.473 −0.926737
\(950\) 0 0
\(951\) −59.7758 + 100.911i −0.0628557 + 0.106111i
\(952\) 0 0
\(953\) 695.440i 0.729737i 0.931059 + 0.364869i \(0.118886\pi\)
−0.931059 + 0.364869i \(0.881114\pi\)
\(954\) 0 0
\(955\) −243.079 −0.254533
\(956\) 0 0
\(957\) 587.684 + 348.120i 0.614090 + 0.363762i
\(958\) 0 0
\(959\) 715.107i 0.745680i
\(960\) 0 0
\(961\) −897.000 −0.933403
\(962\) 0 0
\(963\) −340.302 + 186.453i −0.353377 + 0.193617i
\(964\) 0 0
\(965\) 375.542i 0.389162i
\(966\) 0 0
\(967\) 1030.07 1.06522 0.532609 0.846361i \(-0.321212\pi\)
0.532609 + 0.846361i \(0.321212\pi\)
\(968\) 0 0
\(969\) 1253.21 2115.63i 1.29330 2.18331i
\(970\) 0 0
\(971\) 1165.24i 1.20004i 0.799986 + 0.600019i \(0.204840\pi\)
−0.799986 + 0.600019i \(0.795160\pi\)
\(972\) 0 0
\(973\) 575.106 0.591065
\(974\) 0 0
\(975\) −129.057 76.4481i −0.132366 0.0784083i
\(976\) 0 0
\(977\) 726.440i 0.743541i −0.928325 0.371771i \(-0.878751\pi\)
0.928325 0.371771i \(-0.121249\pi\)
\(978\) 0 0
\(979\) 515.684 0.526746
\(980\) 0 0
\(981\) 578.807 + 1056.40i 0.590017 + 1.07686i
\(982\) 0 0
\(983\) 1024.21i 1.04192i 0.853581 + 0.520960i \(0.174426\pi\)
−0.853581 + 0.520960i \(0.825574\pi\)
\(984\) 0 0
\(985\) 383.842 0.389687
\(986\) 0 0
\(987\) −525.064 + 886.395i −0.531980 + 0.898070i
\(988\) 0 0
\(989\) 132.657i 0.134133i
\(990\) 0 0
\(991\) 1797.89 1.81422 0.907111 0.420892i \(-0.138283\pi\)
0.907111 + 0.420892i \(0.138283\pi\)
\(992\) 0 0
\(993\) −1149.69 681.031i −1.15780 0.685832i
\(994\) 0 0
\(995\) 78.4390i 0.0788332i
\(996\) 0 0
\(997\) 901.368 0.904080 0.452040 0.891998i \(-0.350696\pi\)
0.452040 + 0.891998i \(0.350696\pi\)
\(998\) 0 0
\(999\) 14.4434 430.336i 0.0144579 0.430766i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.3.l.c.161.1 4
3.2 odd 2 inner 240.3.l.c.161.2 4
4.3 odd 2 30.3.d.a.11.2 4
5.2 odd 4 1200.3.c.k.449.4 8
5.3 odd 4 1200.3.c.k.449.5 8
5.4 even 2 1200.3.l.u.401.4 4
8.3 odd 2 960.3.l.e.641.1 4
8.5 even 2 960.3.l.f.641.4 4
12.11 even 2 30.3.d.a.11.4 yes 4
15.2 even 4 1200.3.c.k.449.6 8
15.8 even 4 1200.3.c.k.449.3 8
15.14 odd 2 1200.3.l.u.401.3 4
20.3 even 4 150.3.b.b.149.2 8
20.7 even 4 150.3.b.b.149.7 8
20.19 odd 2 150.3.d.c.101.3 4
24.5 odd 2 960.3.l.f.641.3 4
24.11 even 2 960.3.l.e.641.2 4
36.7 odd 6 810.3.h.a.701.2 8
36.11 even 6 810.3.h.a.701.3 8
36.23 even 6 810.3.h.a.431.2 8
36.31 odd 6 810.3.h.a.431.3 8
60.23 odd 4 150.3.b.b.149.8 8
60.47 odd 4 150.3.b.b.149.1 8
60.59 even 2 150.3.d.c.101.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.3.d.a.11.2 4 4.3 odd 2
30.3.d.a.11.4 yes 4 12.11 even 2
150.3.b.b.149.1 8 60.47 odd 4
150.3.b.b.149.2 8 20.3 even 4
150.3.b.b.149.7 8 20.7 even 4
150.3.b.b.149.8 8 60.23 odd 4
150.3.d.c.101.1 4 60.59 even 2
150.3.d.c.101.3 4 20.19 odd 2
240.3.l.c.161.1 4 1.1 even 1 trivial
240.3.l.c.161.2 4 3.2 odd 2 inner
810.3.h.a.431.2 8 36.23 even 6
810.3.h.a.431.3 8 36.31 odd 6
810.3.h.a.701.2 8 36.7 odd 6
810.3.h.a.701.3 8 36.11 even 6
960.3.l.e.641.1 4 8.3 odd 2
960.3.l.e.641.2 4 24.11 even 2
960.3.l.f.641.3 4 24.5 odd 2
960.3.l.f.641.4 4 8.5 even 2
1200.3.c.k.449.3 8 15.8 even 4
1200.3.c.k.449.4 8 5.2 odd 4
1200.3.c.k.449.5 8 5.3 odd 4
1200.3.c.k.449.6 8 15.2 even 4
1200.3.l.u.401.3 4 15.14 odd 2
1200.3.l.u.401.4 4 5.4 even 2