Properties

 Label 240.3.e.b Level $240$ Weight $3$ Character orbit 240.e Analytic conductor $6.540$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$240 = 2^{4} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 240.e (of order $$2$$, degree $$1$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$6.53952634465$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{5})$$ Defining polynomial: $$x^{4} - x^{3} + 2 x^{2} + x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2^{4}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{2} q^{3} -\beta_{1} q^{5} + ( -2 \beta_{2} - 2 \beta_{3} ) q^{7} -3 q^{9} +O(q^{10})$$ $$q + \beta_{2} q^{3} -\beta_{1} q^{5} + ( -2 \beta_{2} - 2 \beta_{3} ) q^{7} -3 q^{9} + ( -2 \beta_{2} - 2 \beta_{3} ) q^{11} + ( 4 - 6 \beta_{1} ) q^{13} + \beta_{3} q^{15} + ( -12 - 6 \beta_{1} ) q^{17} + ( 8 \beta_{2} - 4 \beta_{3} ) q^{19} + ( 6 - 6 \beta_{1} ) q^{21} + ( 4 \beta_{2} + 4 \beta_{3} ) q^{23} + 5 q^{25} -3 \beta_{2} q^{27} + ( 12 - 18 \beta_{1} ) q^{29} + ( -8 \beta_{2} - 4 \beta_{3} ) q^{31} + ( 6 - 6 \beta_{1} ) q^{33} + ( -10 \beta_{2} - 2 \beta_{3} ) q^{35} + ( -40 + 6 \beta_{1} ) q^{37} + ( 4 \beta_{2} + 6 \beta_{3} ) q^{39} + 42 q^{41} + ( 4 \beta_{2} - 16 \beta_{3} ) q^{43} + 3 \beta_{1} q^{45} + ( 8 \beta_{2} + 8 \beta_{3} ) q^{47} + ( -23 + 24 \beta_{1} ) q^{49} + ( -12 \beta_{2} + 6 \beta_{3} ) q^{51} + ( -48 + 18 \beta_{1} ) q^{53} + ( -10 \beta_{2} - 2 \beta_{3} ) q^{55} + ( -24 - 12 \beta_{1} ) q^{57} + ( 22 \beta_{2} - 2 \beta_{3} ) q^{59} + ( 86 + 12 \beta_{1} ) q^{61} + ( 6 \beta_{2} + 6 \beta_{3} ) q^{63} + ( 30 - 4 \beta_{1} ) q^{65} + ( 16 \beta_{2} - 12 \beta_{3} ) q^{67} + ( -12 + 12 \beta_{1} ) q^{69} + ( 4 \beta_{2} + 28 \beta_{3} ) q^{71} + ( 22 + 36 \beta_{1} ) q^{73} + 5 \beta_{2} q^{75} + ( -72 + 24 \beta_{1} ) q^{77} + 4 \beta_{3} q^{79} + 9 q^{81} + ( -48 \beta_{2} + 12 \beta_{3} ) q^{83} + ( 30 + 12 \beta_{1} ) q^{85} + ( 12 \beta_{2} + 18 \beta_{3} ) q^{87} + ( -66 + 12 \beta_{1} ) q^{89} + ( -68 \beta_{2} - 20 \beta_{3} ) q^{91} + ( 24 - 12 \beta_{1} ) q^{93} + ( -20 \beta_{2} + 8 \beta_{3} ) q^{95} + ( -86 + 24 \beta_{1} ) q^{97} + ( 6 \beta_{2} + 6 \beta_{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 12 q^{9} + O(q^{10})$$ $$4 q - 12 q^{9} + 16 q^{13} - 48 q^{17} + 24 q^{21} + 20 q^{25} + 48 q^{29} + 24 q^{33} - 160 q^{37} + 168 q^{41} - 92 q^{49} - 192 q^{53} - 96 q^{57} + 344 q^{61} + 120 q^{65} - 48 q^{69} + 88 q^{73} - 288 q^{77} + 36 q^{81} + 120 q^{85} - 264 q^{89} + 96 q^{93} - 344 q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - x^{3} + 2 x^{2} + x + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu^{3} + 2$$ $$\beta_{2}$$ $$=$$ $$-\nu^{3} + 2 \nu^{2} - 2 \nu$$ $$\beta_{3}$$ $$=$$ $$2 \nu^{3} - 2 \nu^{2} + 6 \nu + 1$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{3} + \beta_{2} - \beta_{1} + 1$$$$)/4$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{3} + 3 \beta_{2} + \beta_{1} - 3$$$$)/4$$ $$\nu^{3}$$ $$=$$ $$\beta_{1} - 2$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/240\mathbb{Z}\right)^\times$$.

 $$n$$ $$31$$ $$97$$ $$161$$ $$181$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
31.1
 −0.309017 + 0.535233i 0.809017 − 1.40126i −0.309017 − 0.535233i 0.809017 + 1.40126i
0 1.73205i 0 −2.23607 0 4.28187i 0 −3.00000 0
31.2 0 1.73205i 0 2.23607 0 11.2101i 0 −3.00000 0
31.3 0 1.73205i 0 −2.23607 0 4.28187i 0 −3.00000 0
31.4 0 1.73205i 0 2.23607 0 11.2101i 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.3.e.b 4
3.b odd 2 1 720.3.e.e 4
4.b odd 2 1 inner 240.3.e.b 4
5.b even 2 1 1200.3.e.j 4
5.c odd 4 2 1200.3.j.e 8
8.b even 2 1 960.3.e.a 4
8.d odd 2 1 960.3.e.a 4
12.b even 2 1 720.3.e.e 4
15.d odd 2 1 3600.3.e.z 4
15.e even 4 2 3600.3.j.p 8
20.d odd 2 1 1200.3.e.j 4
20.e even 4 2 1200.3.j.e 8
24.f even 2 1 2880.3.e.d 4
24.h odd 2 1 2880.3.e.d 4
60.h even 2 1 3600.3.e.z 4
60.l odd 4 2 3600.3.j.p 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
240.3.e.b 4 1.a even 1 1 trivial
240.3.e.b 4 4.b odd 2 1 inner
720.3.e.e 4 3.b odd 2 1
720.3.e.e 4 12.b even 2 1
960.3.e.a 4 8.b even 2 1
960.3.e.a 4 8.d odd 2 1
1200.3.e.j 4 5.b even 2 1
1200.3.e.j 4 20.d odd 2 1
1200.3.j.e 8 5.c odd 4 2
1200.3.j.e 8 20.e even 4 2
2880.3.e.d 4 24.f even 2 1
2880.3.e.d 4 24.h odd 2 1
3600.3.e.z 4 15.d odd 2 1
3600.3.e.z 4 60.h even 2 1
3600.3.j.p 8 15.e even 4 2
3600.3.j.p 8 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{13}^{2} - 8 T_{13} - 164$$ acting on $$S_{3}^{\mathrm{new}}(240, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$( 3 + T^{2} )^{2}$$
$5$ $$( -5 + T^{2} )^{2}$$
$7$ $$2304 + 144 T^{2} + T^{4}$$
$11$ $$2304 + 144 T^{2} + T^{4}$$
$13$ $$( -164 - 8 T + T^{2} )^{2}$$
$17$ $$( -36 + 24 T + T^{2} )^{2}$$
$19$ $$2304 + 864 T^{2} + T^{4}$$
$23$ $$36864 + 576 T^{2} + T^{4}$$
$29$ $$( -1476 - 24 T + T^{2} )^{2}$$
$31$ $$2304 + 864 T^{2} + T^{4}$$
$37$ $$( 1420 + 80 T + T^{2} )^{2}$$
$41$ $$( -42 + T )^{4}$$
$43$ $$14379264 + 7776 T^{2} + T^{4}$$
$47$ $$589824 + 2304 T^{2} + T^{4}$$
$53$ $$( 684 + 96 T + T^{2} )^{2}$$
$59$ $$1937664 + 3024 T^{2} + T^{4}$$
$61$ $$( 6676 - 172 T + T^{2} )^{2}$$
$67$ $$1937664 + 5856 T^{2} + T^{4}$$
$71$ $$137170944 + 23616 T^{2} + T^{4}$$
$73$ $$( -5996 - 44 T + T^{2} )^{2}$$
$79$ $$( 240 + T^{2} )^{2}$$
$83$ $$22581504 + 18144 T^{2} + T^{4}$$
$89$ $$( 3636 + 132 T + T^{2} )^{2}$$
$97$ $$( 4516 + 172 T + T^{2} )^{2}$$