Properties

Label 240.3.c.e.209.6
Level $240$
Weight $3$
Character 240.209
Analytic conductor $6.540$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 240.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.53952634465\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Defining polynomial: \(x^{12} + 34 x^{10} + 305 x^{8} + 616 x^{6} + 305 x^{4} + 34 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.6
Root \(0.723561i\) of defining polynomial
Character \(\chi\) \(=\) 240.209
Dual form 240.3.c.e.209.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.938195 + 2.84952i) q^{3} +(-4.88807 - 1.05205i) q^{5} +6.81219i q^{7} +(-7.23958 - 5.34682i) q^{9} +O(q^{10})\) \(q+(-0.938195 + 2.84952i) q^{3} +(-4.88807 - 1.05205i) q^{5} +6.81219i q^{7} +(-7.23958 - 5.34682i) q^{9} -7.52980i q^{11} -16.2362i q^{13} +(7.58380 - 12.9416i) q^{15} -4.11928 q^{17} -7.86469 q^{19} +(-19.4115 - 6.39117i) q^{21} -19.5246 q^{23} +(22.7864 + 10.2850i) q^{25} +(22.0280 - 15.6130i) q^{27} -55.8878i q^{29} -43.4375 q^{31} +(21.4563 + 7.06442i) q^{33} +(7.16675 - 33.2984i) q^{35} +31.5824i q^{37} +(46.2655 + 15.2328i) q^{39} +51.3487i q^{41} -51.2914i q^{43} +(29.7624 + 33.7520i) q^{45} -61.7596 q^{47} +2.59407 q^{49} +(3.86469 - 11.7380i) q^{51} -82.7111 q^{53} +(-7.92170 + 36.8061i) q^{55} +(7.37861 - 22.4106i) q^{57} +97.6026i q^{59} +4.13531 q^{61} +(36.4236 - 49.3174i) q^{63} +(-17.0813 + 79.3638i) q^{65} +63.1940i q^{67} +(18.3179 - 55.6358i) q^{69} +40.3087i q^{71} -78.5111i q^{73} +(-50.6853 + 55.2811i) q^{75} +51.2944 q^{77} +51.0103 q^{79} +(23.8230 + 77.4175i) q^{81} +2.72011 q^{83} +(20.1353 + 4.33368i) q^{85} +(159.254 + 52.4337i) q^{87} +70.4279i q^{89} +110.604 q^{91} +(40.7528 - 123.776i) q^{93} +(38.4431 + 8.27403i) q^{95} -3.44364i q^{97} +(-40.2605 + 54.5126i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{9} + O(q^{10}) \) \( 12 q + 8 q^{9} - 16 q^{15} + 4 q^{21} + 36 q^{25} + 48 q^{31} + 128 q^{39} - 68 q^{45} - 252 q^{49} - 48 q^{51} + 48 q^{55} + 144 q^{61} + 268 q^{69} - 304 q^{75} - 432 q^{79} - 188 q^{81} + 336 q^{85} + 560 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.938195 + 2.84952i −0.312732 + 0.949841i
\(4\) 0 0
\(5\) −4.88807 1.05205i −0.977613 0.210409i
\(6\) 0 0
\(7\) 6.81219i 0.973170i 0.873633 + 0.486585i \(0.161758\pi\)
−0.873633 + 0.486585i \(0.838242\pi\)
\(8\) 0 0
\(9\) −7.23958 5.34682i −0.804398 0.594091i
\(10\) 0 0
\(11\) 7.52980i 0.684527i −0.939604 0.342263i \(-0.888806\pi\)
0.939604 0.342263i \(-0.111194\pi\)
\(12\) 0 0
\(13\) 16.2362i 1.24894i −0.781048 0.624471i \(-0.785315\pi\)
0.781048 0.624471i \(-0.214685\pi\)
\(14\) 0 0
\(15\) 7.58380 12.9416i 0.505586 0.862776i
\(16\) 0 0
\(17\) −4.11928 −0.242311 −0.121155 0.992634i \(-0.538660\pi\)
−0.121155 + 0.992634i \(0.538660\pi\)
\(18\) 0 0
\(19\) −7.86469 −0.413931 −0.206965 0.978348i \(-0.566359\pi\)
−0.206965 + 0.978348i \(0.566359\pi\)
\(20\) 0 0
\(21\) −19.4115 6.39117i −0.924357 0.304341i
\(22\) 0 0
\(23\) −19.5246 −0.848895 −0.424447 0.905453i \(-0.639532\pi\)
−0.424447 + 0.905453i \(0.639532\pi\)
\(24\) 0 0
\(25\) 22.7864 + 10.2850i 0.911456 + 0.411398i
\(26\) 0 0
\(27\) 22.0280 15.6130i 0.815853 0.578259i
\(28\) 0 0
\(29\) 55.8878i 1.92717i −0.267408 0.963583i \(-0.586167\pi\)
0.267408 0.963583i \(-0.413833\pi\)
\(30\) 0 0
\(31\) −43.4375 −1.40121 −0.700604 0.713550i \(-0.747086\pi\)
−0.700604 + 0.713550i \(0.747086\pi\)
\(32\) 0 0
\(33\) 21.4563 + 7.06442i 0.650192 + 0.214073i
\(34\) 0 0
\(35\) 7.16675 33.2984i 0.204764 0.951384i
\(36\) 0 0
\(37\) 31.5824i 0.853579i 0.904351 + 0.426790i \(0.140356\pi\)
−0.904351 + 0.426790i \(0.859644\pi\)
\(38\) 0 0
\(39\) 46.2655 + 15.2328i 1.18630 + 0.390584i
\(40\) 0 0
\(41\) 51.3487i 1.25241i 0.779659 + 0.626204i \(0.215392\pi\)
−0.779659 + 0.626204i \(0.784608\pi\)
\(42\) 0 0
\(43\) 51.2914i 1.19282i −0.802678 0.596412i \(-0.796592\pi\)
0.802678 0.596412i \(-0.203408\pi\)
\(44\) 0 0
\(45\) 29.7624 + 33.7520i 0.661387 + 0.750044i
\(46\) 0 0
\(47\) −61.7596 −1.31403 −0.657017 0.753875i \(-0.728182\pi\)
−0.657017 + 0.753875i \(0.728182\pi\)
\(48\) 0 0
\(49\) 2.59407 0.0529401
\(50\) 0 0
\(51\) 3.86469 11.7380i 0.0757782 0.230157i
\(52\) 0 0
\(53\) −82.7111 −1.56059 −0.780293 0.625414i \(-0.784930\pi\)
−0.780293 + 0.625414i \(0.784930\pi\)
\(54\) 0 0
\(55\) −7.92170 + 36.8061i −0.144031 + 0.669203i
\(56\) 0 0
\(57\) 7.37861 22.4106i 0.129449 0.393169i
\(58\) 0 0
\(59\) 97.6026i 1.65428i 0.561994 + 0.827141i \(0.310034\pi\)
−0.561994 + 0.827141i \(0.689966\pi\)
\(60\) 0 0
\(61\) 4.13531 0.0677920 0.0338960 0.999425i \(-0.489209\pi\)
0.0338960 + 0.999425i \(0.489209\pi\)
\(62\) 0 0
\(63\) 36.4236 49.3174i 0.578152 0.782816i
\(64\) 0 0
\(65\) −17.0813 + 79.3638i −0.262789 + 1.22098i
\(66\) 0 0
\(67\) 63.1940i 0.943194i 0.881814 + 0.471597i \(0.156322\pi\)
−0.881814 + 0.471597i \(0.843678\pi\)
\(68\) 0 0
\(69\) 18.3179 55.6358i 0.265476 0.806316i
\(70\) 0 0
\(71\) 40.3087i 0.567729i 0.958864 + 0.283864i \(0.0916165\pi\)
−0.958864 + 0.283864i \(0.908383\pi\)
\(72\) 0 0
\(73\) 78.5111i 1.07549i −0.843106 0.537747i \(-0.819276\pi\)
0.843106 0.537747i \(-0.180724\pi\)
\(74\) 0 0
\(75\) −50.6853 + 55.2811i −0.675804 + 0.737081i
\(76\) 0 0
\(77\) 51.2944 0.666161
\(78\) 0 0
\(79\) 51.0103 0.645699 0.322850 0.946450i \(-0.395359\pi\)
0.322850 + 0.946450i \(0.395359\pi\)
\(80\) 0 0
\(81\) 23.8230 + 77.4175i 0.294111 + 0.955771i
\(82\) 0 0
\(83\) 2.72011 0.0327725 0.0163862 0.999866i \(-0.494784\pi\)
0.0163862 + 0.999866i \(0.494784\pi\)
\(84\) 0 0
\(85\) 20.1353 + 4.33368i 0.236886 + 0.0509844i
\(86\) 0 0
\(87\) 159.254 + 52.4337i 1.83050 + 0.602686i
\(88\) 0 0
\(89\) 70.4279i 0.791325i 0.918396 + 0.395662i \(0.129485\pi\)
−0.918396 + 0.395662i \(0.870515\pi\)
\(90\) 0 0
\(91\) 110.604 1.21543
\(92\) 0 0
\(93\) 40.7528 123.776i 0.438203 1.33093i
\(94\) 0 0
\(95\) 38.4431 + 8.27403i 0.404664 + 0.0870950i
\(96\) 0 0
\(97\) 3.44364i 0.0355015i −0.999842 0.0177507i \(-0.994349\pi\)
0.999842 0.0177507i \(-0.00565053\pi\)
\(98\) 0 0
\(99\) −40.2605 + 54.5126i −0.406671 + 0.550632i
\(100\) 0 0
\(101\) 49.2446i 0.487570i −0.969829 0.243785i \(-0.921611\pi\)
0.969829 0.243785i \(-0.0783892\pi\)
\(102\) 0 0
\(103\) 90.5470i 0.879097i −0.898219 0.439548i \(-0.855138\pi\)
0.898219 0.439548i \(-0.144862\pi\)
\(104\) 0 0
\(105\) 88.1609 + 51.6623i 0.839628 + 0.492022i
\(106\) 0 0
\(107\) −65.3836 −0.611062 −0.305531 0.952182i \(-0.598834\pi\)
−0.305531 + 0.952182i \(0.598834\pi\)
\(108\) 0 0
\(109\) −170.469 −1.56394 −0.781968 0.623319i \(-0.785784\pi\)
−0.781968 + 0.623319i \(0.785784\pi\)
\(110\) 0 0
\(111\) −89.9949 29.6305i −0.810765 0.266941i
\(112\) 0 0
\(113\) −55.4137 −0.490387 −0.245193 0.969474i \(-0.578851\pi\)
−0.245193 + 0.969474i \(0.578851\pi\)
\(114\) 0 0
\(115\) 95.4375 + 20.5408i 0.829891 + 0.178616i
\(116\) 0 0
\(117\) −86.8123 + 117.544i −0.741985 + 1.00465i
\(118\) 0 0
\(119\) 28.0613i 0.235809i
\(120\) 0 0
\(121\) 64.3022 0.531423
\(122\) 0 0
\(123\) −146.319 48.1751i −1.18959 0.391668i
\(124\) 0 0
\(125\) −100.561 74.2459i −0.804489 0.593967i
\(126\) 0 0
\(127\) 74.9923i 0.590491i −0.955421 0.295245i \(-0.904599\pi\)
0.955421 0.295245i \(-0.0954014\pi\)
\(128\) 0 0
\(129\) 146.156 + 48.1214i 1.13299 + 0.373034i
\(130\) 0 0
\(131\) 101.149i 0.772130i −0.922472 0.386065i \(-0.873834\pi\)
0.922472 0.386065i \(-0.126166\pi\)
\(132\) 0 0
\(133\) 53.5758i 0.402825i
\(134\) 0 0
\(135\) −124.100 + 53.1428i −0.919260 + 0.393650i
\(136\) 0 0
\(137\) 114.292 0.834248 0.417124 0.908850i \(-0.363038\pi\)
0.417124 + 0.908850i \(0.363038\pi\)
\(138\) 0 0
\(139\) −230.156 −1.65580 −0.827899 0.560878i \(-0.810464\pi\)
−0.827899 + 0.560878i \(0.810464\pi\)
\(140\) 0 0
\(141\) 57.9426 175.986i 0.410940 1.24812i
\(142\) 0 0
\(143\) −122.256 −0.854934
\(144\) 0 0
\(145\) −58.7966 + 273.183i −0.405494 + 1.88402i
\(146\) 0 0
\(147\) −2.43374 + 7.39185i −0.0165561 + 0.0502847i
\(148\) 0 0
\(149\) 9.12446i 0.0612380i 0.999531 + 0.0306190i \(0.00974785\pi\)
−0.999531 + 0.0306190i \(0.990252\pi\)
\(150\) 0 0
\(151\) 163.010 1.07954 0.539769 0.841813i \(-0.318512\pi\)
0.539769 + 0.841813i \(0.318512\pi\)
\(152\) 0 0
\(153\) 29.8218 + 22.0250i 0.194914 + 0.143955i
\(154\) 0 0
\(155\) 212.325 + 45.6983i 1.36984 + 0.294828i
\(156\) 0 0
\(157\) 122.529i 0.780442i 0.920721 + 0.390221i \(0.127601\pi\)
−0.920721 + 0.390221i \(0.872399\pi\)
\(158\) 0 0
\(159\) 77.5991 235.687i 0.488045 1.48231i
\(160\) 0 0
\(161\) 133.005i 0.826119i
\(162\) 0 0
\(163\) 66.6959i 0.409177i −0.978848 0.204589i \(-0.934414\pi\)
0.978848 0.204589i \(-0.0655857\pi\)
\(164\) 0 0
\(165\) −97.4479 57.1044i −0.590593 0.346088i
\(166\) 0 0
\(167\) −163.583 −0.979539 −0.489769 0.871852i \(-0.662919\pi\)
−0.489769 + 0.871852i \(0.662919\pi\)
\(168\) 0 0
\(169\) −94.6153 −0.559854
\(170\) 0 0
\(171\) 56.9370 + 42.0511i 0.332965 + 0.245913i
\(172\) 0 0
\(173\) 34.7133 0.200655 0.100327 0.994954i \(-0.468011\pi\)
0.100327 + 0.994954i \(0.468011\pi\)
\(174\) 0 0
\(175\) −70.0631 + 155.225i −0.400360 + 0.887001i
\(176\) 0 0
\(177\) −278.121 91.5704i −1.57131 0.517347i
\(178\) 0 0
\(179\) 273.448i 1.52764i −0.645429 0.763820i \(-0.723321\pi\)
0.645429 0.763820i \(-0.276679\pi\)
\(180\) 0 0
\(181\) −40.8749 −0.225828 −0.112914 0.993605i \(-0.536019\pi\)
−0.112914 + 0.993605i \(0.536019\pi\)
\(182\) 0 0
\(183\) −3.87973 + 11.7837i −0.0212007 + 0.0643916i
\(184\) 0 0
\(185\) 33.2262 154.377i 0.179601 0.834471i
\(186\) 0 0
\(187\) 31.0173i 0.165868i
\(188\) 0 0
\(189\) 106.359 + 150.059i 0.562744 + 0.793964i
\(190\) 0 0
\(191\) 40.5934i 0.212531i −0.994338 0.106266i \(-0.966111\pi\)
0.994338 0.106266i \(-0.0338894\pi\)
\(192\) 0 0
\(193\) 141.259i 0.731912i −0.930632 0.365956i \(-0.880742\pi\)
0.930632 0.365956i \(-0.119258\pi\)
\(194\) 0 0
\(195\) −210.124 123.132i −1.07756 0.631448i
\(196\) 0 0
\(197\) 232.643 1.18093 0.590464 0.807064i \(-0.298945\pi\)
0.590464 + 0.807064i \(0.298945\pi\)
\(198\) 0 0
\(199\) −85.3744 −0.429017 −0.214509 0.976722i \(-0.568815\pi\)
−0.214509 + 0.976722i \(0.568815\pi\)
\(200\) 0 0
\(201\) −180.073 59.2883i −0.895885 0.294967i
\(202\) 0 0
\(203\) 380.719 1.87546
\(204\) 0 0
\(205\) 54.0213 250.996i 0.263518 1.22437i
\(206\) 0 0
\(207\) 141.350 + 104.394i 0.682849 + 0.504321i
\(208\) 0 0
\(209\) 59.2195i 0.283347i
\(210\) 0 0
\(211\) −284.532 −1.34849 −0.674247 0.738506i \(-0.735532\pi\)
−0.674247 + 0.738506i \(0.735532\pi\)
\(212\) 0 0
\(213\) −114.861 37.8175i −0.539252 0.177547i
\(214\) 0 0
\(215\) −53.9610 + 250.716i −0.250982 + 1.16612i
\(216\) 0 0
\(217\) 295.904i 1.36361i
\(218\) 0 0
\(219\) 223.719 + 73.6587i 1.02155 + 0.336341i
\(220\) 0 0
\(221\) 66.8816i 0.302632i
\(222\) 0 0
\(223\) 30.2924i 0.135840i 0.997691 + 0.0679201i \(0.0216363\pi\)
−0.997691 + 0.0679201i \(0.978364\pi\)
\(224\) 0 0
\(225\) −109.972 196.294i −0.488765 0.872416i
\(226\) 0 0
\(227\) 239.380 1.05454 0.527269 0.849698i \(-0.323216\pi\)
0.527269 + 0.849698i \(0.323216\pi\)
\(228\) 0 0
\(229\) 284.959 1.24436 0.622180 0.782874i \(-0.286247\pi\)
0.622180 + 0.782874i \(0.286247\pi\)
\(230\) 0 0
\(231\) −48.1242 + 146.165i −0.208330 + 0.632747i
\(232\) 0 0
\(233\) −93.8635 −0.402848 −0.201424 0.979504i \(-0.564557\pi\)
−0.201424 + 0.979504i \(0.564557\pi\)
\(234\) 0 0
\(235\) 301.885 + 64.9741i 1.28462 + 0.276485i
\(236\) 0 0
\(237\) −47.8576 + 145.355i −0.201931 + 0.613312i
\(238\) 0 0
\(239\) 238.326i 0.997181i −0.866838 0.498590i \(-0.833851\pi\)
0.866838 0.498590i \(-0.166149\pi\)
\(240\) 0 0
\(241\) 44.2919 0.183784 0.0918919 0.995769i \(-0.470709\pi\)
0.0918919 + 0.995769i \(0.470709\pi\)
\(242\) 0 0
\(243\) −242.954 4.74848i −0.999809 0.0195411i
\(244\) 0 0
\(245\) −12.6800 2.72908i −0.0517550 0.0111391i
\(246\) 0 0
\(247\) 127.693i 0.516975i
\(248\) 0 0
\(249\) −2.55200 + 7.75103i −0.0102490 + 0.0311286i
\(250\) 0 0
\(251\) 293.093i 1.16770i 0.811862 + 0.583850i \(0.198454\pi\)
−0.811862 + 0.583850i \(0.801546\pi\)
\(252\) 0 0
\(253\) 147.016i 0.581092i
\(254\) 0 0
\(255\) −31.2398 + 53.3102i −0.122509 + 0.209060i
\(256\) 0 0
\(257\) 169.330 0.658870 0.329435 0.944178i \(-0.393142\pi\)
0.329435 + 0.944178i \(0.393142\pi\)
\(258\) 0 0
\(259\) −215.146 −0.830678
\(260\) 0 0
\(261\) −298.822 + 404.604i −1.14491 + 1.55021i
\(262\) 0 0
\(263\) 91.1958 0.346752 0.173376 0.984856i \(-0.444532\pi\)
0.173376 + 0.984856i \(0.444532\pi\)
\(264\) 0 0
\(265\) 404.297 + 87.0160i 1.52565 + 0.328362i
\(266\) 0 0
\(267\) −200.686 66.0751i −0.751633 0.247472i
\(268\) 0 0
\(269\) 325.164i 1.20879i 0.796686 + 0.604393i \(0.206584\pi\)
−0.796686 + 0.604393i \(0.793416\pi\)
\(270\) 0 0
\(271\) 132.719 0.489738 0.244869 0.969556i \(-0.421255\pi\)
0.244869 + 0.969556i \(0.421255\pi\)
\(272\) 0 0
\(273\) −103.768 + 315.170i −0.380104 + 1.15447i
\(274\) 0 0
\(275\) 77.4436 171.577i 0.281613 0.623916i
\(276\) 0 0
\(277\) 254.199i 0.917687i 0.888517 + 0.458844i \(0.151736\pi\)
−0.888517 + 0.458844i \(0.848264\pi\)
\(278\) 0 0
\(279\) 314.469 + 232.252i 1.12713 + 0.832446i
\(280\) 0 0
\(281\) 19.5488i 0.0695687i 0.999395 + 0.0347843i \(0.0110744\pi\)
−0.999395 + 0.0347843i \(0.988926\pi\)
\(282\) 0 0
\(283\) 109.674i 0.387541i 0.981047 + 0.193770i \(0.0620717\pi\)
−0.981047 + 0.193770i \(0.937928\pi\)
\(284\) 0 0
\(285\) −59.6442 + 101.782i −0.209278 + 0.357130i
\(286\) 0 0
\(287\) −349.797 −1.21881
\(288\) 0 0
\(289\) −272.032 −0.941286
\(290\) 0 0
\(291\) 9.81275 + 3.23081i 0.0337208 + 0.0111024i
\(292\) 0 0
\(293\) 178.388 0.608832 0.304416 0.952539i \(-0.401539\pi\)
0.304416 + 0.952539i \(0.401539\pi\)
\(294\) 0 0
\(295\) 102.683 477.088i 0.348077 1.61725i
\(296\) 0 0
\(297\) −117.563 165.867i −0.395834 0.558474i
\(298\) 0 0
\(299\) 317.006i 1.06022i
\(300\) 0 0
\(301\) 349.407 1.16082
\(302\) 0 0
\(303\) 140.324 + 46.2011i 0.463115 + 0.152479i
\(304\) 0 0
\(305\) −20.2137 4.35054i −0.0662744 0.0142641i
\(306\) 0 0
\(307\) 289.046i 0.941518i −0.882262 0.470759i \(-0.843980\pi\)
0.882262 0.470759i \(-0.156020\pi\)
\(308\) 0 0
\(309\) 258.016 + 84.9508i 0.835003 + 0.274922i
\(310\) 0 0
\(311\) 336.061i 1.08058i 0.841478 + 0.540291i \(0.181686\pi\)
−0.841478 + 0.540291i \(0.818314\pi\)
\(312\) 0 0
\(313\) 563.702i 1.80096i 0.434894 + 0.900482i \(0.356786\pi\)
−0.434894 + 0.900482i \(0.643214\pi\)
\(314\) 0 0
\(315\) −229.925 + 202.747i −0.729921 + 0.643642i
\(316\) 0 0
\(317\) 139.938 0.441445 0.220722 0.975337i \(-0.429158\pi\)
0.220722 + 0.975337i \(0.429158\pi\)
\(318\) 0 0
\(319\) −420.824 −1.31920
\(320\) 0 0
\(321\) 61.3426 186.312i 0.191098 0.580412i
\(322\) 0 0
\(323\) 32.3968 0.100300
\(324\) 0 0
\(325\) 166.989 369.965i 0.513812 1.13835i
\(326\) 0 0
\(327\) 159.933 485.756i 0.489092 1.48549i
\(328\) 0 0
\(329\) 420.718i 1.27878i
\(330\) 0 0
\(331\) 14.5116 0.0438416 0.0219208 0.999760i \(-0.493022\pi\)
0.0219208 + 0.999760i \(0.493022\pi\)
\(332\) 0 0
\(333\) 168.866 228.644i 0.507104 0.686617i
\(334\) 0 0
\(335\) 66.4831 308.896i 0.198457 0.922079i
\(336\) 0 0
\(337\) 347.492i 1.03113i −0.856850 0.515566i \(-0.827582\pi\)
0.856850 0.515566i \(-0.172418\pi\)
\(338\) 0 0
\(339\) 51.9889 157.903i 0.153359 0.465790i
\(340\) 0 0
\(341\) 327.075i 0.959165i
\(342\) 0 0
\(343\) 351.469i 1.02469i
\(344\) 0 0
\(345\) −148.070 + 252.680i −0.429190 + 0.732406i
\(346\) 0 0
\(347\) 273.321 0.787670 0.393835 0.919181i \(-0.371148\pi\)
0.393835 + 0.919181i \(0.371148\pi\)
\(348\) 0 0
\(349\) −550.853 −1.57838 −0.789188 0.614152i \(-0.789498\pi\)
−0.789188 + 0.614152i \(0.789498\pi\)
\(350\) 0 0
\(351\) −253.496 357.652i −0.722212 1.01895i
\(352\) 0 0
\(353\) 643.177 1.82203 0.911015 0.412373i \(-0.135300\pi\)
0.911015 + 0.412373i \(0.135300\pi\)
\(354\) 0 0
\(355\) 42.4067 197.032i 0.119455 0.555019i
\(356\) 0 0
\(357\) 79.9614 + 26.3270i 0.223982 + 0.0737451i
\(358\) 0 0
\(359\) 465.873i 1.29770i 0.760918 + 0.648849i \(0.224749\pi\)
−0.760918 + 0.648849i \(0.775251\pi\)
\(360\) 0 0
\(361\) −299.147 −0.828661
\(362\) 0 0
\(363\) −60.3280 + 183.231i −0.166193 + 0.504767i
\(364\) 0 0
\(365\) −82.5974 + 383.767i −0.226294 + 1.05142i
\(366\) 0 0
\(367\) 44.7168i 0.121844i 0.998143 + 0.0609221i \(0.0194041\pi\)
−0.998143 + 0.0609221i \(0.980596\pi\)
\(368\) 0 0
\(369\) 274.552 371.743i 0.744044 1.00743i
\(370\) 0 0
\(371\) 563.443i 1.51872i
\(372\) 0 0
\(373\) 275.158i 0.737688i −0.929491 0.368844i \(-0.879754\pi\)
0.929491 0.368844i \(-0.120246\pi\)
\(374\) 0 0
\(375\) 305.912 216.894i 0.815764 0.578385i
\(376\) 0 0
\(377\) −907.408 −2.40692
\(378\) 0 0
\(379\) 505.072 1.33264 0.666322 0.745664i \(-0.267868\pi\)
0.666322 + 0.745664i \(0.267868\pi\)
\(380\) 0 0
\(381\) 213.692 + 70.3575i 0.560873 + 0.184665i
\(382\) 0 0
\(383\) −193.577 −0.505422 −0.252711 0.967542i \(-0.581322\pi\)
−0.252711 + 0.967542i \(0.581322\pi\)
\(384\) 0 0
\(385\) −250.730 53.9642i −0.651248 0.140167i
\(386\) 0 0
\(387\) −274.246 + 371.328i −0.708646 + 0.959505i
\(388\) 0 0
\(389\) 280.077i 0.719993i −0.932954 0.359996i \(-0.882778\pi\)
0.932954 0.359996i \(-0.117222\pi\)
\(390\) 0 0
\(391\) 80.4272 0.205696
\(392\) 0 0
\(393\) 288.226 + 94.8975i 0.733401 + 0.241469i
\(394\) 0 0
\(395\) −249.342 53.6652i −0.631244 0.135861i
\(396\) 0 0
\(397\) 468.421i 1.17990i 0.807439 + 0.589951i \(0.200853\pi\)
−0.807439 + 0.589951i \(0.799147\pi\)
\(398\) 0 0
\(399\) 152.665 + 50.2645i 0.382620 + 0.125976i
\(400\) 0 0
\(401\) 274.969i 0.685707i −0.939389 0.342854i \(-0.888606\pi\)
0.939389 0.342854i \(-0.111394\pi\)
\(402\) 0 0
\(403\) 705.261i 1.75003i
\(404\) 0 0
\(405\) −35.0016 403.485i −0.0864237 0.996258i
\(406\) 0 0
\(407\) 237.809 0.584298
\(408\) 0 0
\(409\) −202.697 −0.495592 −0.247796 0.968812i \(-0.579706\pi\)
−0.247796 + 0.968812i \(0.579706\pi\)
\(410\) 0 0
\(411\) −107.228 + 325.678i −0.260896 + 0.792403i
\(412\) 0 0
\(413\) −664.888 −1.60990
\(414\) 0 0
\(415\) −13.2961 2.86169i −0.0320388 0.00689564i
\(416\) 0 0
\(417\) 215.931 655.835i 0.517820 1.57274i
\(418\) 0 0
\(419\) 76.6340i 0.182897i −0.995810 0.0914487i \(-0.970850\pi\)
0.995810 0.0914487i \(-0.0291497\pi\)
\(420\) 0 0
\(421\) −183.991 −0.437033 −0.218516 0.975833i \(-0.570122\pi\)
−0.218516 + 0.975833i \(0.570122\pi\)
\(422\) 0 0
\(423\) 447.114 + 330.218i 1.05701 + 0.780657i
\(424\) 0 0
\(425\) −93.8635 42.3666i −0.220855 0.0996861i
\(426\) 0 0
\(427\) 28.1705i 0.0659731i
\(428\) 0 0
\(429\) 114.700 348.370i 0.267365 0.812052i
\(430\) 0 0
\(431\) 671.408i 1.55779i −0.627153 0.778896i \(-0.715780\pi\)
0.627153 0.778896i \(-0.284220\pi\)
\(432\) 0 0
\(433\) 399.351i 0.922288i 0.887325 + 0.461144i \(0.152561\pi\)
−0.887325 + 0.461144i \(0.847439\pi\)
\(434\) 0 0
\(435\) −723.280 423.842i −1.66271 0.974349i
\(436\) 0 0
\(437\) 153.555 0.351384
\(438\) 0 0
\(439\) −140.833 −0.320804 −0.160402 0.987052i \(-0.551279\pi\)
−0.160402 + 0.987052i \(0.551279\pi\)
\(440\) 0 0
\(441\) −18.7799 13.8700i −0.0425849 0.0314513i
\(442\) 0 0
\(443\) −211.416 −0.477237 −0.238618 0.971113i \(-0.576694\pi\)
−0.238618 + 0.971113i \(0.576694\pi\)
\(444\) 0 0
\(445\) 74.0935 344.256i 0.166502 0.773610i
\(446\) 0 0
\(447\) −26.0004 8.56052i −0.0581664 0.0191511i
\(448\) 0 0
\(449\) 455.166i 1.01373i −0.862025 0.506866i \(-0.830804\pi\)
0.862025 0.506866i \(-0.169196\pi\)
\(450\) 0 0
\(451\) 386.645 0.857307
\(452\) 0 0
\(453\) −152.935 + 464.502i −0.337606 + 1.02539i
\(454\) 0 0
\(455\) −540.641 116.361i −1.18822 0.255738i
\(456\) 0 0
\(457\) 555.776i 1.21614i −0.793883 0.608070i \(-0.791944\pi\)
0.793883 0.608070i \(-0.208056\pi\)
\(458\) 0 0
\(459\) −90.7396 + 64.3143i −0.197690 + 0.140118i
\(460\) 0 0
\(461\) 369.227i 0.800927i −0.916313 0.400463i \(-0.868849\pi\)
0.916313 0.400463i \(-0.131151\pi\)
\(462\) 0 0
\(463\) 360.832i 0.779336i −0.920955 0.389668i \(-0.872590\pi\)
0.920955 0.389668i \(-0.127410\pi\)
\(464\) 0 0
\(465\) −329.421 + 562.152i −0.708432 + 1.20893i
\(466\) 0 0
\(467\) −496.306 −1.06275 −0.531377 0.847135i \(-0.678325\pi\)
−0.531377 + 0.847135i \(0.678325\pi\)
\(468\) 0 0
\(469\) −430.490 −0.917888
\(470\) 0 0
\(471\) −349.151 114.957i −0.741296 0.244069i
\(472\) 0 0
\(473\) −386.214 −0.816520
\(474\) 0 0
\(475\) −179.208 80.8880i −0.377280 0.170290i
\(476\) 0 0
\(477\) 598.793 + 442.241i 1.25533 + 0.927131i
\(478\) 0 0
\(479\) 286.032i 0.597145i 0.954387 + 0.298572i \(0.0965105\pi\)
−0.954387 + 0.298572i \(0.903490\pi\)
\(480\) 0 0
\(481\) 512.780 1.06607
\(482\) 0 0
\(483\) 379.002 + 124.785i 0.784682 + 0.258354i
\(484\) 0 0
\(485\) −3.62288 + 16.8328i −0.00746985 + 0.0347067i
\(486\) 0 0
\(487\) 34.3276i 0.0704880i 0.999379 + 0.0352440i \(0.0112208\pi\)
−0.999379 + 0.0352440i \(0.988779\pi\)
\(488\) 0 0
\(489\) 190.052 + 62.5738i 0.388653 + 0.127963i
\(490\) 0 0
\(491\) 26.4204i 0.0538094i −0.999638 0.0269047i \(-0.991435\pi\)
0.999638 0.0269047i \(-0.00856507\pi\)
\(492\) 0 0
\(493\) 230.218i 0.466973i
\(494\) 0 0
\(495\) 254.146 224.105i 0.513426 0.452738i
\(496\) 0 0
\(497\) −274.591 −0.552496
\(498\) 0 0
\(499\) 72.9046 0.146101 0.0730507 0.997328i \(-0.476727\pi\)
0.0730507 + 0.997328i \(0.476727\pi\)
\(500\) 0 0
\(501\) 153.473 466.134i 0.306333 0.930407i
\(502\) 0 0
\(503\) −228.404 −0.454083 −0.227041 0.973885i \(-0.572905\pi\)
−0.227041 + 0.973885i \(0.572905\pi\)
\(504\) 0 0
\(505\) −51.8077 + 240.711i −0.102589 + 0.476655i
\(506\) 0 0
\(507\) 88.7677 269.609i 0.175084 0.531773i
\(508\) 0 0
\(509\) 99.1735i 0.194840i 0.995243 + 0.0974199i \(0.0310590\pi\)
−0.995243 + 0.0974199i \(0.968941\pi\)
\(510\) 0 0
\(511\) 534.832 1.04664
\(512\) 0 0
\(513\) −173.244 + 122.791i −0.337707 + 0.239359i
\(514\) 0 0
\(515\) −95.2597 + 442.600i −0.184970 + 0.859417i
\(516\) 0 0
\(517\) 465.037i 0.899492i
\(518\) 0 0
\(519\) −32.5678 + 98.9163i −0.0627511 + 0.190590i
\(520\) 0 0
\(521\) 691.462i 1.32718i 0.748095 + 0.663592i \(0.230969\pi\)
−0.748095 + 0.663592i \(0.769031\pi\)
\(522\) 0 0
\(523\) 821.405i 1.57056i −0.619138 0.785282i \(-0.712518\pi\)
0.619138 0.785282i \(-0.287482\pi\)
\(524\) 0 0
\(525\) −376.585 345.278i −0.717305 0.657672i
\(526\) 0 0
\(527\) 178.931 0.339528
\(528\) 0 0
\(529\) −147.791 −0.279377
\(530\) 0 0
\(531\) 521.864 706.602i 0.982795 1.33070i
\(532\) 0 0
\(533\) 833.710 1.56418
\(534\) 0 0
\(535\) 319.599 + 68.7866i 0.597382 + 0.128573i
\(536\) 0 0
\(537\) 779.196 + 256.547i 1.45102 + 0.477742i
\(538\) 0 0
\(539\) 19.5328i 0.0362389i
\(540\) 0 0
\(541\) 446.354 0.825054 0.412527 0.910945i \(-0.364646\pi\)
0.412527 + 0.910945i \(0.364646\pi\)
\(542\) 0 0
\(543\) 38.3487 116.474i 0.0706237 0.214501i
\(544\) 0 0
\(545\) 833.264 + 179.341i 1.52892 + 0.329067i
\(546\) 0 0
\(547\) 485.492i 0.887553i −0.896137 0.443777i \(-0.853638\pi\)
0.896137 0.443777i \(-0.146362\pi\)
\(548\) 0 0
\(549\) −29.9379 22.1108i −0.0545317 0.0402746i
\(550\) 0 0
\(551\) 439.540i 0.797714i
\(552\) 0 0
\(553\) 347.492i 0.628375i
\(554\) 0 0
\(555\) 408.729 + 239.515i 0.736448 + 0.431558i
\(556\) 0 0
\(557\) −995.191 −1.78670 −0.893349 0.449363i \(-0.851651\pi\)
−0.893349 + 0.449363i \(0.851651\pi\)
\(558\) 0 0
\(559\) −832.780 −1.48977
\(560\) 0 0
\(561\) −88.3847 29.1003i −0.157548 0.0518722i
\(562\) 0 0
\(563\) 486.571 0.864248 0.432124 0.901814i \(-0.357764\pi\)
0.432124 + 0.901814i \(0.357764\pi\)
\(564\) 0 0
\(565\) 270.866 + 58.2978i 0.479408 + 0.103182i
\(566\) 0 0
\(567\) −527.383 + 162.287i −0.930128 + 0.286220i
\(568\) 0 0
\(569\) 737.704i 1.29649i 0.761431 + 0.648246i \(0.224497\pi\)
−0.761431 + 0.648246i \(0.775503\pi\)
\(570\) 0 0
\(571\) −805.843 −1.41128 −0.705642 0.708569i \(-0.749341\pi\)
−0.705642 + 0.708569i \(0.749341\pi\)
\(572\) 0 0
\(573\) 115.672 + 38.0846i 0.201871 + 0.0664652i
\(574\) 0 0
\(575\) −444.895 200.810i −0.773730 0.349234i
\(576\) 0 0
\(577\) 690.512i 1.19673i −0.801225 0.598364i \(-0.795818\pi\)
0.801225 0.598364i \(-0.204182\pi\)
\(578\) 0 0
\(579\) 402.521 + 132.529i 0.695201 + 0.228892i
\(580\) 0 0
\(581\) 18.5299i 0.0318932i
\(582\) 0 0
\(583\) 622.798i 1.06826i
\(584\) 0 0
\(585\) 548.005 483.230i 0.936761 0.826034i
\(586\) 0 0
\(587\) 670.611 1.14244 0.571219 0.820798i \(-0.306471\pi\)
0.571219 + 0.820798i \(0.306471\pi\)
\(588\) 0 0
\(589\) 341.622 0.580004
\(590\) 0 0
\(591\) −218.265 + 662.922i −0.369314 + 1.12170i
\(592\) 0 0
\(593\) −214.249 −0.361296 −0.180648 0.983548i \(-0.557819\pi\)
−0.180648 + 0.983548i \(0.557819\pi\)
\(594\) 0 0
\(595\) −29.5218 + 137.166i −0.0496165 + 0.230530i
\(596\) 0 0
\(597\) 80.0979 243.276i 0.134167 0.407498i
\(598\) 0 0
\(599\) 303.315i 0.506368i 0.967418 + 0.253184i \(0.0814779\pi\)
−0.967418 + 0.253184i \(0.918522\pi\)
\(600\) 0 0
\(601\) 66.0555 0.109909 0.0549546 0.998489i \(-0.482499\pi\)
0.0549546 + 0.998489i \(0.482499\pi\)
\(602\) 0 0
\(603\) 337.887 457.498i 0.560343 0.758703i
\(604\) 0 0
\(605\) −314.313 67.6489i −0.519526 0.111816i
\(606\) 0 0
\(607\) 178.972i 0.294847i −0.989073 0.147423i \(-0.952902\pi\)
0.989073 0.147423i \(-0.0470980\pi\)
\(608\) 0 0
\(609\) −357.188 + 1084.87i −0.586516 + 1.78139i
\(610\) 0 0
\(611\) 1002.74i 1.64115i
\(612\) 0 0
\(613\) 728.201i 1.18793i −0.804491 0.593965i \(-0.797562\pi\)
0.804491 0.593965i \(-0.202438\pi\)
\(614\) 0 0
\(615\) 664.537 + 389.418i 1.08055 + 0.633200i
\(616\) 0 0
\(617\) −198.426 −0.321598 −0.160799 0.986987i \(-0.551407\pi\)
−0.160799 + 0.986987i \(0.551407\pi\)
\(618\) 0 0
\(619\) −17.1752 −0.0277468 −0.0138734 0.999904i \(-0.504416\pi\)
−0.0138734 + 0.999904i \(0.504416\pi\)
\(620\) 0 0
\(621\) −430.088 + 304.837i −0.692574 + 0.490881i
\(622\) 0 0
\(623\) −479.768 −0.770094
\(624\) 0 0
\(625\) 413.439 + 468.714i 0.661503 + 0.749943i
\(626\) 0 0
\(627\) −168.747 55.5595i −0.269135 0.0886116i
\(628\) 0 0
\(629\) 130.097i 0.206831i
\(630\) 0 0
\(631\) 388.876 0.616285 0.308142 0.951340i \(-0.400293\pi\)
0.308142 + 0.951340i \(0.400293\pi\)
\(632\) 0 0
\(633\) 266.947 810.781i 0.421717 1.28085i
\(634\) 0 0
\(635\) −78.8955 + 366.568i −0.124245 + 0.577272i
\(636\) 0 0
\(637\) 42.1179i 0.0661191i
\(638\) 0 0
\(639\) 215.524 291.818i 0.337283 0.456680i
\(640\) 0 0
\(641\) 180.547i 0.281664i 0.990034 + 0.140832i \(0.0449778\pi\)
−0.990034 + 0.140832i \(0.955022\pi\)
\(642\) 0 0
\(643\) 701.008i 1.09021i 0.838367 + 0.545107i \(0.183511\pi\)
−0.838367 + 0.545107i \(0.816489\pi\)
\(644\) 0 0
\(645\) −663.795 388.984i −1.02914 0.603076i
\(646\) 0 0
\(647\) 114.266 0.176609 0.0883046 0.996094i \(-0.471855\pi\)
0.0883046 + 0.996094i \(0.471855\pi\)
\(648\) 0 0
\(649\) 734.928 1.13240
\(650\) 0 0
\(651\) 843.187 + 277.616i 1.29522 + 0.426446i
\(652\) 0 0
\(653\) −240.882 −0.368884 −0.184442 0.982843i \(-0.559048\pi\)
−0.184442 + 0.982843i \(0.559048\pi\)
\(654\) 0 0
\(655\) −106.414 + 494.423i −0.162463 + 0.754844i
\(656\) 0 0
\(657\) −419.785 + 568.387i −0.638942 + 0.865125i
\(658\) 0 0
\(659\) 1218.15i 1.84848i −0.381807 0.924242i \(-0.624698\pi\)
0.381807 0.924242i \(-0.375302\pi\)
\(660\) 0 0
\(661\) −1075.32 −1.62681 −0.813404 0.581699i \(-0.802388\pi\)
−0.813404 + 0.581699i \(0.802388\pi\)
\(662\) 0 0
\(663\) −190.581 62.7480i −0.287452 0.0946425i
\(664\) 0 0
\(665\) −56.3642 + 261.882i −0.0847583 + 0.393807i
\(666\) 0 0
\(667\) 1091.19i 1.63596i
\(668\) 0 0
\(669\) −86.3189 28.4202i −0.129027 0.0424816i
\(670\) 0 0
\(671\) 31.1381i 0.0464054i
\(672\) 0 0
\(673\) 356.367i 0.529521i −0.964314 0.264760i \(-0.914707\pi\)
0.964314 0.264760i \(-0.0852928\pi\)
\(674\) 0 0
\(675\) 662.518 129.206i 0.981509 0.191417i
\(676\) 0 0
\(677\) 79.8649 0.117969 0.0589844 0.998259i \(-0.481214\pi\)
0.0589844 + 0.998259i \(0.481214\pi\)
\(678\) 0 0
\(679\) 23.4588 0.0345490
\(680\) 0 0
\(681\) −224.585 + 682.120i −0.329788 + 1.00164i
\(682\) 0 0
\(683\) −1270.41 −1.86004 −0.930021 0.367507i \(-0.880211\pi\)
−0.930021 + 0.367507i \(0.880211\pi\)
\(684\) 0 0
\(685\) −558.667 120.241i −0.815572 0.175534i
\(686\) 0 0
\(687\) −267.347 + 811.996i −0.389151 + 1.18195i
\(688\) 0 0
\(689\) 1342.92i 1.94908i
\(690\) 0 0
\(691\) −1244.39 −1.80085 −0.900424 0.435013i \(-0.856744\pi\)
−0.900424 + 0.435013i \(0.856744\pi\)
\(692\) 0 0
\(693\) −371.350 274.262i −0.535858 0.395760i
\(694\) 0 0
\(695\) 1125.02 + 242.135i 1.61873 + 0.348395i
\(696\) 0 0
\(697\) 211.520i 0.303472i
\(698\) 0 0
\(699\) 88.0623 267.466i 0.125983 0.382641i
\(700\) 0 0
\(701\) 1034.47i 1.47570i −0.674965 0.737850i \(-0.735841\pi\)
0.674965 0.737850i \(-0.264159\pi\)
\(702\) 0 0
\(703\) 248.386i 0.353323i
\(704\) 0 0
\(705\) −468.372 + 799.271i −0.664358 + 1.13372i
\(706\) 0 0
\(707\) 335.464 0.474489
\(708\) 0 0
\(709\) 659.081 0.929592 0.464796 0.885418i \(-0.346128\pi\)
0.464796 + 0.885418i \(0.346128\pi\)
\(710\) 0 0
\(711\) −369.293 272.743i −0.519399 0.383604i
\(712\) 0 0
\(713\) 848.099 1.18948
\(714\) 0 0
\(715\) 597.593 + 128.619i 0.835795 + 0.179886i
\(716\) 0 0
\(717\) 679.116 + 223.597i 0.947164 + 0.311850i
\(718\) 0 0
\(719\) 471.213i 0.655373i −0.944787 0.327686i \(-0.893731\pi\)
0.944787 0.327686i \(-0.106269\pi\)
\(720\) 0 0
\(721\) 616.823 0.855511
\(722\) 0 0
\(723\) −41.5545 + 126.211i −0.0574750 + 0.174566i
\(724\) 0 0
\(725\) 574.804 1273.48i 0.792833 1.75653i
\(726\) 0 0
\(727\) 640.411i 0.880895i −0.897778 0.440447i \(-0.854820\pi\)
0.897778 0.440447i \(-0.145180\pi\)
\(728\) 0 0
\(729\) 241.469 687.847i 0.331233 0.943549i
\(730\) 0 0
\(731\) 211.284i 0.289034i
\(732\) 0 0
\(733\) 619.831i 0.845608i −0.906221 0.422804i \(-0.861046\pi\)
0.906221 0.422804i \(-0.138954\pi\)
\(734\) 0 0
\(735\) 19.6729 33.5715i 0.0267658 0.0456755i
\(736\) 0 0
\(737\) 475.838 0.645642
\(738\) 0 0
\(739\) 135.992 0.184022 0.0920111 0.995758i \(-0.470670\pi\)
0.0920111 + 0.995758i \(0.470670\pi\)
\(740\) 0 0
\(741\) −363.864 119.801i −0.491045 0.161675i
\(742\) 0 0
\(743\) 986.468 1.32768 0.663841 0.747874i \(-0.268925\pi\)
0.663841 + 0.747874i \(0.268925\pi\)
\(744\) 0 0
\(745\) 9.59936 44.6010i 0.0128851 0.0598671i
\(746\) 0 0
\(747\) −19.6925 14.5440i −0.0263621 0.0194698i
\(748\) 0 0
\(749\) 445.405i 0.594667i
\(750\) 0 0
\(751\) 551.977 0.734990 0.367495 0.930026i \(-0.380216\pi\)
0.367495 + 0.930026i \(0.380216\pi\)
\(752\) 0 0
\(753\) −835.175 274.978i −1.10913 0.365177i
\(754\) 0 0
\(755\) −796.805 171.495i −1.05537 0.227145i
\(756\) 0 0
\(757\) 1143.91i 1.51111i 0.655084 + 0.755556i \(0.272633\pi\)
−0.655084 + 0.755556i \(0.727367\pi\)
\(758\) 0 0
\(759\) −418.926 137.930i −0.551945 0.181726i
\(760\) 0 0
\(761\) 29.3201i 0.0385284i −0.999814 0.0192642i \(-0.993868\pi\)
0.999814 0.0192642i \(-0.00613236\pi\)
\(762\) 0 0
\(763\) 1161.27i 1.52198i
\(764\) 0 0
\(765\) −122.600 139.034i −0.160261 0.181744i
\(766\) 0 0
\(767\) 1584.70 2.06610
\(768\) 0 0
\(769\) −61.7841 −0.0803434 −0.0401717 0.999193i \(-0.512790\pi\)
−0.0401717 + 0.999193i \(0.512790\pi\)
\(770\) 0 0
\(771\) −158.864 + 482.509i −0.206050 + 0.625822i
\(772\) 0 0
\(773\) −444.408 −0.574913 −0.287457 0.957794i \(-0.592810\pi\)
−0.287457 + 0.957794i \(0.592810\pi\)
\(774\) 0 0
\(775\) −989.783 446.753i −1.27714 0.576455i
\(776\) 0 0
\(777\) 201.849 613.063i 0.259779 0.789012i
\(778\) 0 0
\(779\) 403.842i 0.518410i
\(780\) 0 0
\(781\) 303.517 0.388626
\(782\) 0 0
\(783\) −872.576 1231.10i −1.11440 1.57229i
\(784\) 0 0
\(785\) 128.907 598.932i 0.164212 0.762971i
\(786\) 0 0
\(787\) 206.738i 0.262691i −0.991337 0.131346i \(-0.958070\pi\)
0.991337 0.131346i \(-0.0419298\pi\)
\(788\) 0 0
\(789\) −85.5595 + 259.865i −0.108440 + 0.329360i
\(790\) 0 0
\(791\) 377.489i 0.477230i
\(792\) 0 0
\(793\) 67.1419i 0.0846682i
\(794\) 0 0
\(795\) −627.264 + 1070.42i −0.789011 + 1.34644i
\(796\) 0 0
\(797\) 235.281 0.295208 0.147604 0.989047i \(-0.452844\pi\)
0.147604 + 0.989047i \(0.452844\pi\)
\(798\) 0 0
\(799\) 254.405