Properties

Label 240.3.c.d
Level $240$
Weight $3$
Character orbit 240.c
Analytic conductor $6.540$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 240.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.53952634465\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Defining polynomial: \(x^{4} + 3 x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + ( \beta_{1} - \beta_{3} ) q^{5} + ( -2 \beta_{2} + 2 \beta_{3} ) q^{7} + ( 1 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{9} +O(q^{10})\) \( q + \beta_{3} q^{3} + ( \beta_{1} - \beta_{3} ) q^{5} + ( -2 \beta_{2} + 2 \beta_{3} ) q^{7} + ( 1 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{9} + ( -2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{11} + ( -3 \beta_{2} + 3 \beta_{3} ) q^{13} + ( -5 + \beta_{1} + 5 \beta_{2} - \beta_{3} ) q^{15} + ( 7 \beta_{2} + 7 \beta_{3} ) q^{17} + 6 q^{19} + ( -16 - 4 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{21} + ( \beta_{2} + \beta_{3} ) q^{23} + ( -15 - 5 \beta_{2} + 5 \beta_{3} ) q^{25} + ( -9 \beta_{2} + 2 \beta_{3} ) q^{27} + ( 6 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} ) q^{29} -34 q^{31} + ( -9 \beta_{2} + \beta_{3} ) q^{33} + ( 4 \beta_{1} + 10 \beta_{2} + 6 \beta_{3} ) q^{35} + ( 11 \beta_{2} - 11 \beta_{3} ) q^{37} + ( -24 - 6 \beta_{1} - 3 \beta_{2} + 3 \beta_{3} ) q^{39} + ( -4 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{41} + ( -7 \beta_{2} + 7 \beta_{3} ) q^{43} + ( 40 + \beta_{1} + 5 \beta_{2} - 6 \beta_{3} ) q^{45} + ( \beta_{2} + \beta_{3} ) q^{47} -15 q^{49} + ( 70 - 14 \beta_{1} - 7 \beta_{2} + 7 \beta_{3} ) q^{51} + ( -9 \beta_{2} - 9 \beta_{3} ) q^{53} + ( 40 + 5 \beta_{2} - 5 \beta_{3} ) q^{55} + 6 \beta_{3} q^{57} + ( 22 \beta_{1} + 11 \beta_{2} - 11 \beta_{3} ) q^{59} + 74 q^{61} + ( -18 \beta_{2} - 14 \beta_{3} ) q^{63} + ( 6 \beta_{1} + 15 \beta_{2} + 9 \beta_{3} ) q^{65} + ( 23 \beta_{2} - 23 \beta_{3} ) q^{67} + ( 10 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{69} + ( 12 \beta_{1} + 6 \beta_{2} - 6 \beta_{3} ) q^{71} + ( -14 \beta_{2} + 14 \beta_{3} ) q^{73} + ( -40 - 10 \beta_{1} - 5 \beta_{2} - 10 \beta_{3} ) q^{75} + ( -16 \beta_{2} - 16 \beta_{3} ) q^{77} + 78 q^{79} + ( -79 - 4 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{81} + ( -23 \beta_{2} - 23 \beta_{3} ) q^{83} + ( -70 + 35 \beta_{2} - 35 \beta_{3} ) q^{85} + ( 27 \beta_{2} - 3 \beta_{3} ) q^{87} + ( 4 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{89} -96 q^{91} -34 \beta_{3} q^{93} + ( 6 \beta_{1} - 6 \beta_{3} ) q^{95} + ( -8 \beta_{2} + 8 \beta_{3} ) q^{97} + ( -80 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 4q^{9} + O(q^{10}) \) \( 4q + 4q^{9} - 20q^{15} + 24q^{19} - 64q^{21} - 60q^{25} - 136q^{31} - 96q^{39} + 160q^{45} - 60q^{49} + 280q^{51} + 160q^{55} + 296q^{61} + 40q^{69} - 160q^{75} + 312q^{79} - 316q^{81} - 280q^{85} - 384q^{91} - 320q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 3 x^{2} + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( 4 \nu \)
\(\beta_{2}\)\(=\)\( 2 \nu^{3} + 2 \nu^{2} + 4 \nu + 3 \)
\(\beta_{3}\)\(=\)\( -2 \nu^{3} + 2 \nu^{2} - 4 \nu + 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)\(/4\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3} + \beta_{2} - 6\)\()/4\)
\(\nu^{3}\)\(=\)\((\)\(-\beta_{3} + \beta_{2} - 2 \beta_{1}\)\()/4\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
209.1
1.61803i
1.61803i
0.618034i
0.618034i
0 −2.23607 2.00000i 0 2.23607 4.47214i 0 8.00000i 0 1.00000 + 8.94427i 0
209.2 0 −2.23607 + 2.00000i 0 2.23607 + 4.47214i 0 8.00000i 0 1.00000 8.94427i 0
209.3 0 2.23607 2.00000i 0 −2.23607 + 4.47214i 0 8.00000i 0 1.00000 8.94427i 0
209.4 0 2.23607 + 2.00000i 0 −2.23607 4.47214i 0 8.00000i 0 1.00000 + 8.94427i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.3.c.d 4
3.b odd 2 1 inner 240.3.c.d 4
4.b odd 2 1 60.3.b.a 4
5.b even 2 1 inner 240.3.c.d 4
5.c odd 4 1 1200.3.l.h 2
5.c odd 4 1 1200.3.l.q 2
8.b even 2 1 960.3.c.g 4
8.d odd 2 1 960.3.c.h 4
12.b even 2 1 60.3.b.a 4
15.d odd 2 1 inner 240.3.c.d 4
15.e even 4 1 1200.3.l.h 2
15.e even 4 1 1200.3.l.q 2
20.d odd 2 1 60.3.b.a 4
20.e even 4 1 300.3.g.e 2
20.e even 4 1 300.3.g.h 2
24.f even 2 1 960.3.c.h 4
24.h odd 2 1 960.3.c.g 4
36.f odd 6 2 1620.3.t.b 8
36.h even 6 2 1620.3.t.b 8
40.e odd 2 1 960.3.c.h 4
40.f even 2 1 960.3.c.g 4
60.h even 2 1 60.3.b.a 4
60.l odd 4 1 300.3.g.e 2
60.l odd 4 1 300.3.g.h 2
120.i odd 2 1 960.3.c.g 4
120.m even 2 1 960.3.c.h 4
180.n even 6 2 1620.3.t.b 8
180.p odd 6 2 1620.3.t.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.b.a 4 4.b odd 2 1
60.3.b.a 4 12.b even 2 1
60.3.b.a 4 20.d odd 2 1
60.3.b.a 4 60.h even 2 1
240.3.c.d 4 1.a even 1 1 trivial
240.3.c.d 4 3.b odd 2 1 inner
240.3.c.d 4 5.b even 2 1 inner
240.3.c.d 4 15.d odd 2 1 inner
300.3.g.e 2 20.e even 4 1
300.3.g.e 2 60.l odd 4 1
300.3.g.h 2 20.e even 4 1
300.3.g.h 2 60.l odd 4 1
960.3.c.g 4 8.b even 2 1
960.3.c.g 4 24.h odd 2 1
960.3.c.g 4 40.f even 2 1
960.3.c.g 4 120.i odd 2 1
960.3.c.h 4 8.d odd 2 1
960.3.c.h 4 24.f even 2 1
960.3.c.h 4 40.e odd 2 1
960.3.c.h 4 120.m even 2 1
1200.3.l.h 2 5.c odd 4 1
1200.3.l.h 2 15.e even 4 1
1200.3.l.q 2 5.c odd 4 1
1200.3.l.q 2 15.e even 4 1
1620.3.t.b 8 36.f odd 6 2
1620.3.t.b 8 36.h even 6 2
1620.3.t.b 8 180.n even 6 2
1620.3.t.b 8 180.p odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(240, [\chi])\):

\( T_{7}^{2} + 64 \)
\( T_{17}^{2} - 980 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( 81 - 2 T^{2} + T^{4} \)
$5$ \( 625 + 30 T^{2} + T^{4} \)
$7$ \( ( 64 + T^{2} )^{2} \)
$11$ \( ( 80 + T^{2} )^{2} \)
$13$ \( ( 144 + T^{2} )^{2} \)
$17$ \( ( -980 + T^{2} )^{2} \)
$19$ \( ( -6 + T )^{4} \)
$23$ \( ( -20 + T^{2} )^{2} \)
$29$ \( ( 720 + T^{2} )^{2} \)
$31$ \( ( 34 + T )^{4} \)
$37$ \( ( 1936 + T^{2} )^{2} \)
$41$ \( ( 320 + T^{2} )^{2} \)
$43$ \( ( 784 + T^{2} )^{2} \)
$47$ \( ( -20 + T^{2} )^{2} \)
$53$ \( ( -1620 + T^{2} )^{2} \)
$59$ \( ( 9680 + T^{2} )^{2} \)
$61$ \( ( -74 + T )^{4} \)
$67$ \( ( 8464 + T^{2} )^{2} \)
$71$ \( ( 2880 + T^{2} )^{2} \)
$73$ \( ( 3136 + T^{2} )^{2} \)
$79$ \( ( -78 + T )^{4} \)
$83$ \( ( -10580 + T^{2} )^{2} \)
$89$ \( ( 320 + T^{2} )^{2} \)
$97$ \( ( 1024 + T^{2} )^{2} \)
show more
show less