Defining parameters
Level: | \( N \) | \(=\) | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 240.w (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(240, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 12 | 108 |
Cusp forms | 72 | 12 | 60 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(240, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
240.2.w.a | $4$ | $1.916$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q+\zeta_{8}q^{3}+(-2+\zeta_{8}^{2})q^{5}+4\zeta_{8}^{3}q^{7}+\cdots\) |
240.2.w.b | $8$ | $1.916$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q+\beta_{5} q^{3}+(-\beta_{3}+\beta_{2}+1)q^{5}+(-\beta_{6}-\beta_{4}+2\beta_1)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(240, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)