# Properties

 Label 240.2.f.c Level $240$ Weight $2$ Character orbit 240.f Analytic conductor $1.916$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$240 = 2^{4} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 240.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.91640964851$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 120) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{3} + ( 2 + i ) q^{5} + 2 i q^{7} - q^{9} +O(q^{10})$$ $$q + i q^{3} + ( 2 + i ) q^{5} + 2 i q^{7} - q^{9} -2 q^{11} -2 i q^{13} + ( -1 + 2 i ) q^{15} + 6 i q^{17} + 8 q^{19} -2 q^{21} -4 i q^{23} + ( 3 + 4 i ) q^{25} -i q^{27} -8 q^{29} -2 i q^{33} + ( -2 + 4 i ) q^{35} -10 i q^{37} + 2 q^{39} + 2 q^{41} -12 i q^{43} + ( -2 - i ) q^{45} + 3 q^{49} -6 q^{51} -10 i q^{53} + ( -4 - 2 i ) q^{55} + 8 i q^{57} -6 q^{59} + 2 q^{61} -2 i q^{63} + ( 2 - 4 i ) q^{65} + 8 i q^{67} + 4 q^{69} + 4 q^{71} -4 i q^{73} + ( -4 + 3 i ) q^{75} -4 i q^{77} -8 q^{79} + q^{81} + 4 i q^{83} + ( -6 + 12 i ) q^{85} -8 i q^{87} -6 q^{89} + 4 q^{91} + ( 16 + 8 i ) q^{95} + 8 i q^{97} + 2 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 4 q^{5} - 2 q^{9} + O(q^{10})$$ $$2 q + 4 q^{5} - 2 q^{9} - 4 q^{11} - 2 q^{15} + 16 q^{19} - 4 q^{21} + 6 q^{25} - 16 q^{29} - 4 q^{35} + 4 q^{39} + 4 q^{41} - 4 q^{45} + 6 q^{49} - 12 q^{51} - 8 q^{55} - 12 q^{59} + 4 q^{61} + 4 q^{65} + 8 q^{69} + 8 q^{71} - 8 q^{75} - 16 q^{79} + 2 q^{81} - 12 q^{85} - 12 q^{89} + 8 q^{91} + 32 q^{95} + 4 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/240\mathbb{Z}\right)^\times$$.

 $$n$$ $$31$$ $$97$$ $$161$$ $$181$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
49.1
 − 1.00000i 1.00000i
0 1.00000i 0 2.00000 1.00000i 0 2.00000i 0 −1.00000 0
49.2 0 1.00000i 0 2.00000 + 1.00000i 0 2.00000i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.2.f.c 2
3.b odd 2 1 720.2.f.b 2
4.b odd 2 1 120.2.f.a 2
5.b even 2 1 inner 240.2.f.c 2
5.c odd 4 1 1200.2.a.h 1
5.c odd 4 1 1200.2.a.l 1
8.b even 2 1 960.2.f.b 2
8.d odd 2 1 960.2.f.a 2
12.b even 2 1 360.2.f.a 2
15.d odd 2 1 720.2.f.b 2
15.e even 4 1 3600.2.a.n 1
15.e even 4 1 3600.2.a.bi 1
16.e even 4 1 3840.2.d.m 2
16.e even 4 1 3840.2.d.v 2
16.f odd 4 1 3840.2.d.d 2
16.f odd 4 1 3840.2.d.ba 2
20.d odd 2 1 120.2.f.a 2
20.e even 4 1 600.2.a.d 1
20.e even 4 1 600.2.a.g 1
24.f even 2 1 2880.2.f.t 2
24.h odd 2 1 2880.2.f.r 2
40.e odd 2 1 960.2.f.a 2
40.f even 2 1 960.2.f.b 2
40.i odd 4 1 4800.2.a.n 1
40.i odd 4 1 4800.2.a.ci 1
40.k even 4 1 4800.2.a.k 1
40.k even 4 1 4800.2.a.ch 1
60.h even 2 1 360.2.f.a 2
60.l odd 4 1 1800.2.a.g 1
60.l odd 4 1 1800.2.a.q 1
80.k odd 4 1 3840.2.d.d 2
80.k odd 4 1 3840.2.d.ba 2
80.q even 4 1 3840.2.d.m 2
80.q even 4 1 3840.2.d.v 2
120.i odd 2 1 2880.2.f.r 2
120.m even 2 1 2880.2.f.t 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.f.a 2 4.b odd 2 1
120.2.f.a 2 20.d odd 2 1
240.2.f.c 2 1.a even 1 1 trivial
240.2.f.c 2 5.b even 2 1 inner
360.2.f.a 2 12.b even 2 1
360.2.f.a 2 60.h even 2 1
600.2.a.d 1 20.e even 4 1
600.2.a.g 1 20.e even 4 1
720.2.f.b 2 3.b odd 2 1
720.2.f.b 2 15.d odd 2 1
960.2.f.a 2 8.d odd 2 1
960.2.f.a 2 40.e odd 2 1
960.2.f.b 2 8.b even 2 1
960.2.f.b 2 40.f even 2 1
1200.2.a.h 1 5.c odd 4 1
1200.2.a.l 1 5.c odd 4 1
1800.2.a.g 1 60.l odd 4 1
1800.2.a.q 1 60.l odd 4 1
2880.2.f.r 2 24.h odd 2 1
2880.2.f.r 2 120.i odd 2 1
2880.2.f.t 2 24.f even 2 1
2880.2.f.t 2 120.m even 2 1
3600.2.a.n 1 15.e even 4 1
3600.2.a.bi 1 15.e even 4 1
3840.2.d.d 2 16.f odd 4 1
3840.2.d.d 2 80.k odd 4 1
3840.2.d.m 2 16.e even 4 1
3840.2.d.m 2 80.q even 4 1
3840.2.d.v 2 16.e even 4 1
3840.2.d.v 2 80.q even 4 1
3840.2.d.ba 2 16.f odd 4 1
3840.2.d.ba 2 80.k odd 4 1
4800.2.a.k 1 40.k even 4 1
4800.2.a.n 1 40.i odd 4 1
4800.2.a.ch 1 40.k even 4 1
4800.2.a.ci 1 40.i odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(240, [\chi])$$:

 $$T_{7}^{2} + 4$$ $$T_{13}^{2} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$1 + T^{2}$$
$5$ $$5 - 4 T + T^{2}$$
$7$ $$4 + T^{2}$$
$11$ $$( 2 + T )^{2}$$
$13$ $$4 + T^{2}$$
$17$ $$36 + T^{2}$$
$19$ $$( -8 + T )^{2}$$
$23$ $$16 + T^{2}$$
$29$ $$( 8 + T )^{2}$$
$31$ $$T^{2}$$
$37$ $$100 + T^{2}$$
$41$ $$( -2 + T )^{2}$$
$43$ $$144 + T^{2}$$
$47$ $$T^{2}$$
$53$ $$100 + T^{2}$$
$59$ $$( 6 + T )^{2}$$
$61$ $$( -2 + T )^{2}$$
$67$ $$64 + T^{2}$$
$71$ $$( -4 + T )^{2}$$
$73$ $$16 + T^{2}$$
$79$ $$( 8 + T )^{2}$$
$83$ $$16 + T^{2}$$
$89$ $$( 6 + T )^{2}$$
$97$ $$64 + T^{2}$$