# Properties

 Label 240.2.bl Level $240$ Weight $2$ Character orbit 240.bl Rep. character $\chi_{240}(109,\cdot)$ Character field $\Q(\zeta_{4})$ Dimension $48$ Newform subspaces $1$ Sturm bound $96$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$240 = 2^{4} \cdot 3 \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 240.bl (of order $$4$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$80$$ Character field: $$\Q(i)$$ Newform subspaces: $$1$$ Sturm bound: $$96$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(240, [\chi])$$.

Total New Old
Modular forms 104 48 56
Cusp forms 88 48 40
Eisenstein series 16 0 16

## Trace form

 $$48q + O(q^{10})$$ $$48q + 12q^{10} - 16q^{14} - 4q^{16} + 8q^{19} - 4q^{24} - 40q^{26} - 8q^{30} - 48q^{31} - 28q^{34} + 24q^{35} - 4q^{36} - 16q^{40} - 40q^{44} - 4q^{46} + 48q^{49} - 32q^{50} + 8q^{51} - 4q^{54} + 48q^{56} - 32q^{59} - 24q^{60} + 16q^{61} + 48q^{64} + 16q^{65} + 24q^{66} - 16q^{69} + 40q^{74} - 16q^{75} + 60q^{76} - 96q^{79} + 72q^{80} - 48q^{81} + 16q^{86} + 8q^{90} - 32q^{91} + 44q^{94} - 48q^{95} - 40q^{96} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(240, [\chi])$$ into newform subspaces

Label Dim. $$A$$ Field CM Traces $q$-expansion
$$a_2$$ $$a_3$$ $$a_5$$ $$a_7$$
240.2.bl.a $$48$$ $$1.916$$ None $$0$$ $$0$$ $$0$$ $$0$$

## Decomposition of $$S_{2}^{\mathrm{old}}(240, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(240, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(80, [\chi])$$$$^{\oplus 2}$$