Defining parameters
Level: | \( N \) | \(=\) | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 240.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(240))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 4 | 56 |
Cusp forms | 37 | 4 | 33 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(1\) |
Plus space | \(+\) | \(1\) | ||
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(240))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | |||||||
240.2.a.a | $1$ | $1.916$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-4\) | $+$ | $+$ | $+$ | \(q-q^{3}-q^{5}-4q^{7}+q^{9}-6q^{13}+q^{15}+\cdots\) | |
240.2.a.b | $1$ | $1.916$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(4\) | $-$ | $+$ | $+$ | \(q-q^{3}-q^{5}+4q^{7}+q^{9}+2q^{13}+q^{15}+\cdots\) | |
240.2.a.c | $1$ | $1.916$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | \(q-q^{3}+q^{5}+q^{9}+4q^{11}+6q^{13}+\cdots\) | |
240.2.a.d | $1$ | $1.916$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | \(q+q^{3}+q^{5}+q^{9}+4q^{11}-2q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(240))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(240)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)