Properties

Label 240.12.a.m.1.1
Level $240$
Weight $12$
Character 240.1
Self dual yes
Analytic conductor $184.402$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,12,Mod(1,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(184.402363334\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1801}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 450 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(21.7191\) of defining polynomial
Character \(\chi\) \(=\) 240.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+243.000 q^{3} -3125.00 q^{5} -79941.2 q^{7} +59049.0 q^{9} -805067. q^{11} -1.19767e6 q^{13} -759375. q^{15} +2.63319e6 q^{17} -1.16061e7 q^{19} -1.94257e7 q^{21} -1.84216e7 q^{23} +9.76562e6 q^{25} +1.43489e7 q^{27} -1.90527e8 q^{29} -1.01127e8 q^{31} -1.95631e8 q^{33} +2.49816e8 q^{35} +8.06675e7 q^{37} -2.91034e8 q^{39} +2.26316e8 q^{41} -1.67149e9 q^{43} -1.84528e8 q^{45} -8.58507e8 q^{47} +4.41327e9 q^{49} +6.39864e8 q^{51} -3.52750e9 q^{53} +2.51583e9 q^{55} -2.82028e9 q^{57} -4.35760e9 q^{59} -1.65393e9 q^{61} -4.72045e9 q^{63} +3.74272e9 q^{65} -7.58610e9 q^{67} -4.47645e9 q^{69} +2.75809e10 q^{71} +3.22368e10 q^{73} +2.37305e9 q^{75} +6.43580e10 q^{77} +2.43149e9 q^{79} +3.48678e9 q^{81} -1.20729e10 q^{83} -8.22871e9 q^{85} -4.62981e10 q^{87} +4.44073e9 q^{89} +9.57433e10 q^{91} -2.45737e10 q^{93} +3.62690e10 q^{95} -2.04453e10 q^{97} -4.75384e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 486 q^{3} - 6250 q^{5} - 7784 q^{7} + 118098 q^{9} - 295568 q^{11} + 657492 q^{13} - 1518750 q^{15} + 8579948 q^{17} - 17627976 q^{19} - 1891512 q^{21} + 29841072 q^{23} + 19531250 q^{25} + 28697814 q^{27}+ \cdots - 17452994832 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 243.000 0.577350
\(4\) 0 0
\(5\) −3125.00 −0.447214
\(6\) 0 0
\(7\) −79941.2 −1.79776 −0.898880 0.438195i \(-0.855618\pi\)
−0.898880 + 0.438195i \(0.855618\pi\)
\(8\) 0 0
\(9\) 59049.0 0.333333
\(10\) 0 0
\(11\) −805067. −1.50720 −0.753602 0.657331i \(-0.771685\pi\)
−0.753602 + 0.657331i \(0.771685\pi\)
\(12\) 0 0
\(13\) −1.19767e6 −0.894641 −0.447321 0.894374i \(-0.647622\pi\)
−0.447321 + 0.894374i \(0.647622\pi\)
\(14\) 0 0
\(15\) −759375. −0.258199
\(16\) 0 0
\(17\) 2.63319e6 0.449793 0.224896 0.974383i \(-0.427796\pi\)
0.224896 + 0.974383i \(0.427796\pi\)
\(18\) 0 0
\(19\) −1.16061e7 −1.07533 −0.537664 0.843159i \(-0.680693\pi\)
−0.537664 + 0.843159i \(0.680693\pi\)
\(20\) 0 0
\(21\) −1.94257e7 −1.03794
\(22\) 0 0
\(23\) −1.84216e7 −0.596794 −0.298397 0.954442i \(-0.596452\pi\)
−0.298397 + 0.954442i \(0.596452\pi\)
\(24\) 0 0
\(25\) 9.76562e6 0.200000
\(26\) 0 0
\(27\) 1.43489e7 0.192450
\(28\) 0 0
\(29\) −1.90527e8 −1.72491 −0.862457 0.506130i \(-0.831076\pi\)
−0.862457 + 0.506130i \(0.831076\pi\)
\(30\) 0 0
\(31\) −1.01127e8 −0.634419 −0.317209 0.948356i \(-0.602746\pi\)
−0.317209 + 0.948356i \(0.602746\pi\)
\(32\) 0 0
\(33\) −1.95631e8 −0.870185
\(34\) 0 0
\(35\) 2.49816e8 0.803983
\(36\) 0 0
\(37\) 8.06675e7 0.191245 0.0956223 0.995418i \(-0.469516\pi\)
0.0956223 + 0.995418i \(0.469516\pi\)
\(38\) 0 0
\(39\) −2.91034e8 −0.516522
\(40\) 0 0
\(41\) 2.26316e8 0.305073 0.152537 0.988298i \(-0.451256\pi\)
0.152537 + 0.988298i \(0.451256\pi\)
\(42\) 0 0
\(43\) −1.67149e9 −1.73391 −0.866956 0.498385i \(-0.833927\pi\)
−0.866956 + 0.498385i \(0.833927\pi\)
\(44\) 0 0
\(45\) −1.84528e8 −0.149071
\(46\) 0 0
\(47\) −8.58507e8 −0.546016 −0.273008 0.962012i \(-0.588019\pi\)
−0.273008 + 0.962012i \(0.588019\pi\)
\(48\) 0 0
\(49\) 4.41327e9 2.23194
\(50\) 0 0
\(51\) 6.39864e8 0.259688
\(52\) 0 0
\(53\) −3.52750e9 −1.15864 −0.579322 0.815099i \(-0.696683\pi\)
−0.579322 + 0.815099i \(0.696683\pi\)
\(54\) 0 0
\(55\) 2.51583e9 0.674042
\(56\) 0 0
\(57\) −2.82028e9 −0.620841
\(58\) 0 0
\(59\) −4.35760e9 −0.793527 −0.396763 0.917921i \(-0.629867\pi\)
−0.396763 + 0.917921i \(0.629867\pi\)
\(60\) 0 0
\(61\) −1.65393e9 −0.250727 −0.125364 0.992111i \(-0.540010\pi\)
−0.125364 + 0.992111i \(0.540010\pi\)
\(62\) 0 0
\(63\) −4.72045e9 −0.599253
\(64\) 0 0
\(65\) 3.74272e9 0.400096
\(66\) 0 0
\(67\) −7.58610e9 −0.686447 −0.343224 0.939254i \(-0.611519\pi\)
−0.343224 + 0.939254i \(0.611519\pi\)
\(68\) 0 0
\(69\) −4.47645e9 −0.344559
\(70\) 0 0
\(71\) 2.75809e10 1.81421 0.907104 0.420905i \(-0.138288\pi\)
0.907104 + 0.420905i \(0.138288\pi\)
\(72\) 0 0
\(73\) 3.22368e10 1.82002 0.910011 0.414584i \(-0.136073\pi\)
0.910011 + 0.414584i \(0.136073\pi\)
\(74\) 0 0
\(75\) 2.37305e9 0.115470
\(76\) 0 0
\(77\) 6.43580e10 2.70959
\(78\) 0 0
\(79\) 2.43149e9 0.0889046 0.0444523 0.999012i \(-0.485846\pi\)
0.0444523 + 0.999012i \(0.485846\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) 0 0
\(83\) −1.20729e10 −0.336421 −0.168210 0.985751i \(-0.553799\pi\)
−0.168210 + 0.985751i \(0.553799\pi\)
\(84\) 0 0
\(85\) −8.22871e9 −0.201154
\(86\) 0 0
\(87\) −4.62981e10 −0.995880
\(88\) 0 0
\(89\) 4.44073e9 0.0842964 0.0421482 0.999111i \(-0.486580\pi\)
0.0421482 + 0.999111i \(0.486580\pi\)
\(90\) 0 0
\(91\) 9.57433e10 1.60835
\(92\) 0 0
\(93\) −2.45737e10 −0.366282
\(94\) 0 0
\(95\) 3.62690e10 0.480901
\(96\) 0 0
\(97\) −2.04453e10 −0.241740 −0.120870 0.992668i \(-0.538568\pi\)
−0.120870 + 0.992668i \(0.538568\pi\)
\(98\) 0 0
\(99\) −4.75384e10 −0.502401
\(100\) 0 0
\(101\) −1.55947e11 −1.47642 −0.738209 0.674572i \(-0.764328\pi\)
−0.738209 + 0.674572i \(0.764328\pi\)
\(102\) 0 0
\(103\) 5.10325e10 0.433752 0.216876 0.976199i \(-0.430413\pi\)
0.216876 + 0.976199i \(0.430413\pi\)
\(104\) 0 0
\(105\) 6.07054e10 0.464180
\(106\) 0 0
\(107\) −1.06665e10 −0.0735207 −0.0367603 0.999324i \(-0.511704\pi\)
−0.0367603 + 0.999324i \(0.511704\pi\)
\(108\) 0 0
\(109\) −3.12513e10 −0.194546 −0.0972729 0.995258i \(-0.531012\pi\)
−0.0972729 + 0.995258i \(0.531012\pi\)
\(110\) 0 0
\(111\) 1.96022e10 0.110415
\(112\) 0 0
\(113\) −3.96346e10 −0.202369 −0.101184 0.994868i \(-0.532263\pi\)
−0.101184 + 0.994868i \(0.532263\pi\)
\(114\) 0 0
\(115\) 5.75676e10 0.266895
\(116\) 0 0
\(117\) −7.07213e10 −0.298214
\(118\) 0 0
\(119\) −2.10500e11 −0.808620
\(120\) 0 0
\(121\) 3.62821e11 1.27166
\(122\) 0 0
\(123\) 5.49948e10 0.176134
\(124\) 0 0
\(125\) −3.05176e10 −0.0894427
\(126\) 0 0
\(127\) −2.63460e10 −0.0707611 −0.0353806 0.999374i \(-0.511264\pi\)
−0.0353806 + 0.999374i \(0.511264\pi\)
\(128\) 0 0
\(129\) −4.06172e11 −1.00107
\(130\) 0 0
\(131\) 2.19917e11 0.498044 0.249022 0.968498i \(-0.419891\pi\)
0.249022 + 0.968498i \(0.419891\pi\)
\(132\) 0 0
\(133\) 9.27805e11 1.93318
\(134\) 0 0
\(135\) −4.48403e10 −0.0860663
\(136\) 0 0
\(137\) −5.54041e11 −0.980795 −0.490398 0.871499i \(-0.663148\pi\)
−0.490398 + 0.871499i \(0.663148\pi\)
\(138\) 0 0
\(139\) 6.17540e11 1.00945 0.504723 0.863281i \(-0.331594\pi\)
0.504723 + 0.863281i \(0.331594\pi\)
\(140\) 0 0
\(141\) −2.08617e11 −0.315243
\(142\) 0 0
\(143\) 9.64205e11 1.34841
\(144\) 0 0
\(145\) 5.95397e11 0.771405
\(146\) 0 0
\(147\) 1.07243e12 1.28861
\(148\) 0 0
\(149\) −6.68742e11 −0.745992 −0.372996 0.927833i \(-0.621670\pi\)
−0.372996 + 0.927833i \(0.621670\pi\)
\(150\) 0 0
\(151\) −1.38243e12 −1.43308 −0.716541 0.697545i \(-0.754276\pi\)
−0.716541 + 0.697545i \(0.754276\pi\)
\(152\) 0 0
\(153\) 1.55487e11 0.149931
\(154\) 0 0
\(155\) 3.16020e11 0.283721
\(156\) 0 0
\(157\) −7.93661e11 −0.664029 −0.332014 0.943274i \(-0.607728\pi\)
−0.332014 + 0.943274i \(0.607728\pi\)
\(158\) 0 0
\(159\) −8.57184e11 −0.668944
\(160\) 0 0
\(161\) 1.47265e12 1.07289
\(162\) 0 0
\(163\) 4.67399e11 0.318168 0.159084 0.987265i \(-0.449146\pi\)
0.159084 + 0.987265i \(0.449146\pi\)
\(164\) 0 0
\(165\) 6.11348e11 0.389158
\(166\) 0 0
\(167\) −2.87482e12 −1.71266 −0.856328 0.516432i \(-0.827260\pi\)
−0.856328 + 0.516432i \(0.827260\pi\)
\(168\) 0 0
\(169\) −3.57745e11 −0.199617
\(170\) 0 0
\(171\) −6.85328e11 −0.358443
\(172\) 0 0
\(173\) 1.53085e12 0.751068 0.375534 0.926809i \(-0.377459\pi\)
0.375534 + 0.926809i \(0.377459\pi\)
\(174\) 0 0
\(175\) −7.80676e11 −0.359552
\(176\) 0 0
\(177\) −1.05890e12 −0.458143
\(178\) 0 0
\(179\) 1.91337e12 0.778228 0.389114 0.921190i \(-0.372781\pi\)
0.389114 + 0.921190i \(0.372781\pi\)
\(180\) 0 0
\(181\) −1.70819e12 −0.653587 −0.326794 0.945096i \(-0.605968\pi\)
−0.326794 + 0.945096i \(0.605968\pi\)
\(182\) 0 0
\(183\) −4.01904e11 −0.144758
\(184\) 0 0
\(185\) −2.52086e11 −0.0855272
\(186\) 0 0
\(187\) −2.11989e12 −0.677930
\(188\) 0 0
\(189\) −1.14707e12 −0.345979
\(190\) 0 0
\(191\) −3.16020e12 −0.899562 −0.449781 0.893139i \(-0.648498\pi\)
−0.449781 + 0.893139i \(0.648498\pi\)
\(192\) 0 0
\(193\) 2.77296e12 0.745382 0.372691 0.927956i \(-0.378435\pi\)
0.372691 + 0.927956i \(0.378435\pi\)
\(194\) 0 0
\(195\) 9.09481e11 0.230995
\(196\) 0 0
\(197\) 3.86504e12 0.928089 0.464044 0.885812i \(-0.346398\pi\)
0.464044 + 0.885812i \(0.346398\pi\)
\(198\) 0 0
\(199\) 1.01839e12 0.231325 0.115663 0.993289i \(-0.463101\pi\)
0.115663 + 0.993289i \(0.463101\pi\)
\(200\) 0 0
\(201\) −1.84342e12 −0.396321
\(202\) 0 0
\(203\) 1.52310e13 3.10098
\(204\) 0 0
\(205\) −7.07237e11 −0.136433
\(206\) 0 0
\(207\) −1.08778e12 −0.198931
\(208\) 0 0
\(209\) 9.34367e12 1.62074
\(210\) 0 0
\(211\) −2.05668e12 −0.338543 −0.169271 0.985569i \(-0.554141\pi\)
−0.169271 + 0.985569i \(0.554141\pi\)
\(212\) 0 0
\(213\) 6.70216e12 1.04743
\(214\) 0 0
\(215\) 5.22340e12 0.775429
\(216\) 0 0
\(217\) 8.08418e12 1.14053
\(218\) 0 0
\(219\) 7.83355e12 1.05079
\(220\) 0 0
\(221\) −3.15369e12 −0.402403
\(222\) 0 0
\(223\) −9.99986e12 −1.21428 −0.607138 0.794597i \(-0.707682\pi\)
−0.607138 + 0.794597i \(0.707682\pi\)
\(224\) 0 0
\(225\) 5.76650e11 0.0666667
\(226\) 0 0
\(227\) 6.77123e12 0.745634 0.372817 0.927905i \(-0.378392\pi\)
0.372817 + 0.927905i \(0.378392\pi\)
\(228\) 0 0
\(229\) 1.01933e13 1.06959 0.534796 0.844981i \(-0.320389\pi\)
0.534796 + 0.844981i \(0.320389\pi\)
\(230\) 0 0
\(231\) 1.56390e13 1.56438
\(232\) 0 0
\(233\) 6.74446e12 0.643412 0.321706 0.946840i \(-0.395744\pi\)
0.321706 + 0.946840i \(0.395744\pi\)
\(234\) 0 0
\(235\) 2.68283e12 0.244186
\(236\) 0 0
\(237\) 5.90853e11 0.0513291
\(238\) 0 0
\(239\) 1.76501e13 1.46406 0.732030 0.681272i \(-0.238573\pi\)
0.732030 + 0.681272i \(0.238573\pi\)
\(240\) 0 0
\(241\) −1.37662e13 −1.09074 −0.545369 0.838196i \(-0.683611\pi\)
−0.545369 + 0.838196i \(0.683611\pi\)
\(242\) 0 0
\(243\) 8.47289e11 0.0641500
\(244\) 0 0
\(245\) −1.37915e13 −0.998154
\(246\) 0 0
\(247\) 1.39003e13 0.962033
\(248\) 0 0
\(249\) −2.93372e12 −0.194233
\(250\) 0 0
\(251\) −3.02252e13 −1.91498 −0.957490 0.288467i \(-0.906855\pi\)
−0.957490 + 0.288467i \(0.906855\pi\)
\(252\) 0 0
\(253\) 1.48306e13 0.899491
\(254\) 0 0
\(255\) −1.99958e12 −0.116136
\(256\) 0 0
\(257\) 6.88263e12 0.382933 0.191466 0.981499i \(-0.438676\pi\)
0.191466 + 0.981499i \(0.438676\pi\)
\(258\) 0 0
\(259\) −6.44866e12 −0.343812
\(260\) 0 0
\(261\) −1.12504e13 −0.574971
\(262\) 0 0
\(263\) 3.29948e13 1.61692 0.808462 0.588549i \(-0.200301\pi\)
0.808462 + 0.588549i \(0.200301\pi\)
\(264\) 0 0
\(265\) 1.10235e13 0.518162
\(266\) 0 0
\(267\) 1.07910e12 0.0486686
\(268\) 0 0
\(269\) −2.97478e13 −1.28771 −0.643855 0.765148i \(-0.722666\pi\)
−0.643855 + 0.765148i \(0.722666\pi\)
\(270\) 0 0
\(271\) 4.30410e13 1.78876 0.894378 0.447312i \(-0.147619\pi\)
0.894378 + 0.447312i \(0.147619\pi\)
\(272\) 0 0
\(273\) 2.32656e13 0.928582
\(274\) 0 0
\(275\) −7.86198e12 −0.301441
\(276\) 0 0
\(277\) 1.46706e13 0.540518 0.270259 0.962788i \(-0.412891\pi\)
0.270259 + 0.962788i \(0.412891\pi\)
\(278\) 0 0
\(279\) −5.97142e12 −0.211473
\(280\) 0 0
\(281\) 4.18378e13 1.42457 0.712286 0.701890i \(-0.247660\pi\)
0.712286 + 0.701890i \(0.247660\pi\)
\(282\) 0 0
\(283\) −2.34242e13 −0.767078 −0.383539 0.923525i \(-0.625295\pi\)
−0.383539 + 0.923525i \(0.625295\pi\)
\(284\) 0 0
\(285\) 8.81337e12 0.277648
\(286\) 0 0
\(287\) −1.80920e13 −0.548448
\(288\) 0 0
\(289\) −2.73382e13 −0.797686
\(290\) 0 0
\(291\) −4.96820e12 −0.139568
\(292\) 0 0
\(293\) −7.31258e12 −0.197833 −0.0989166 0.995096i \(-0.531538\pi\)
−0.0989166 + 0.995096i \(0.531538\pi\)
\(294\) 0 0
\(295\) 1.36175e13 0.354876
\(296\) 0 0
\(297\) −1.15518e13 −0.290062
\(298\) 0 0
\(299\) 2.20630e13 0.533917
\(300\) 0 0
\(301\) 1.33621e14 3.11716
\(302\) 0 0
\(303\) −3.78951e13 −0.852410
\(304\) 0 0
\(305\) 5.16852e12 0.112129
\(306\) 0 0
\(307\) 5.37239e13 1.12436 0.562181 0.827014i \(-0.309962\pi\)
0.562181 + 0.827014i \(0.309962\pi\)
\(308\) 0 0
\(309\) 1.24009e13 0.250427
\(310\) 0 0
\(311\) −5.41406e13 −1.05521 −0.527607 0.849489i \(-0.676911\pi\)
−0.527607 + 0.849489i \(0.676911\pi\)
\(312\) 0 0
\(313\) −4.29721e12 −0.0808524 −0.0404262 0.999183i \(-0.512872\pi\)
−0.0404262 + 0.999183i \(0.512872\pi\)
\(314\) 0 0
\(315\) 1.47514e13 0.267994
\(316\) 0 0
\(317\) −2.81928e13 −0.494666 −0.247333 0.968931i \(-0.579554\pi\)
−0.247333 + 0.968931i \(0.579554\pi\)
\(318\) 0 0
\(319\) 1.53387e14 2.59980
\(320\) 0 0
\(321\) −2.59195e12 −0.0424472
\(322\) 0 0
\(323\) −3.05610e13 −0.483675
\(324\) 0 0
\(325\) −1.16960e13 −0.178928
\(326\) 0 0
\(327\) −7.59406e12 −0.112321
\(328\) 0 0
\(329\) 6.86301e13 0.981606
\(330\) 0 0
\(331\) 9.95469e13 1.37713 0.688563 0.725176i \(-0.258242\pi\)
0.688563 + 0.725176i \(0.258242\pi\)
\(332\) 0 0
\(333\) 4.76334e12 0.0637482
\(334\) 0 0
\(335\) 2.37066e13 0.306989
\(336\) 0 0
\(337\) −9.05175e13 −1.13440 −0.567202 0.823579i \(-0.691974\pi\)
−0.567202 + 0.823579i \(0.691974\pi\)
\(338\) 0 0
\(339\) −9.63121e12 −0.116838
\(340\) 0 0
\(341\) 8.14136e13 0.956198
\(342\) 0 0
\(343\) −1.94733e14 −2.21473
\(344\) 0 0
\(345\) 1.39889e13 0.154092
\(346\) 0 0
\(347\) 6.36892e13 0.679601 0.339801 0.940498i \(-0.389640\pi\)
0.339801 + 0.940498i \(0.389640\pi\)
\(348\) 0 0
\(349\) 7.08598e13 0.732588 0.366294 0.930499i \(-0.380626\pi\)
0.366294 + 0.930499i \(0.380626\pi\)
\(350\) 0 0
\(351\) −1.71853e13 −0.172174
\(352\) 0 0
\(353\) 6.62893e13 0.643699 0.321849 0.946791i \(-0.395696\pi\)
0.321849 + 0.946791i \(0.395696\pi\)
\(354\) 0 0
\(355\) −8.61903e13 −0.811339
\(356\) 0 0
\(357\) −5.11516e13 −0.466857
\(358\) 0 0
\(359\) −6.80217e13 −0.602044 −0.301022 0.953617i \(-0.597328\pi\)
−0.301022 + 0.953617i \(0.597328\pi\)
\(360\) 0 0
\(361\) 1.82109e13 0.156330
\(362\) 0 0
\(363\) 8.81654e13 0.734196
\(364\) 0 0
\(365\) −1.00740e14 −0.813939
\(366\) 0 0
\(367\) −2.19771e14 −1.72309 −0.861543 0.507685i \(-0.830501\pi\)
−0.861543 + 0.507685i \(0.830501\pi\)
\(368\) 0 0
\(369\) 1.33637e13 0.101691
\(370\) 0 0
\(371\) 2.81993e14 2.08296
\(372\) 0 0
\(373\) −1.67232e14 −1.19928 −0.599639 0.800271i \(-0.704689\pi\)
−0.599639 + 0.800271i \(0.704689\pi\)
\(374\) 0 0
\(375\) −7.41577e12 −0.0516398
\(376\) 0 0
\(377\) 2.28189e14 1.54318
\(378\) 0 0
\(379\) 1.57778e14 1.03641 0.518205 0.855256i \(-0.326600\pi\)
0.518205 + 0.855256i \(0.326600\pi\)
\(380\) 0 0
\(381\) −6.40209e12 −0.0408540
\(382\) 0 0
\(383\) −5.49255e13 −0.340550 −0.170275 0.985397i \(-0.554466\pi\)
−0.170275 + 0.985397i \(0.554466\pi\)
\(384\) 0 0
\(385\) −2.01119e14 −1.21177
\(386\) 0 0
\(387\) −9.86997e13 −0.577971
\(388\) 0 0
\(389\) −2.32940e14 −1.32593 −0.662965 0.748650i \(-0.730702\pi\)
−0.662965 + 0.748650i \(0.730702\pi\)
\(390\) 0 0
\(391\) −4.85076e13 −0.268434
\(392\) 0 0
\(393\) 5.34399e13 0.287546
\(394\) 0 0
\(395\) −7.59842e12 −0.0397593
\(396\) 0 0
\(397\) −4.76134e13 −0.242316 −0.121158 0.992633i \(-0.538661\pi\)
−0.121158 + 0.992633i \(0.538661\pi\)
\(398\) 0 0
\(399\) 2.25456e14 1.11612
\(400\) 0 0
\(401\) −2.99074e14 −1.44040 −0.720202 0.693764i \(-0.755951\pi\)
−0.720202 + 0.693764i \(0.755951\pi\)
\(402\) 0 0
\(403\) 1.21116e14 0.567577
\(404\) 0 0
\(405\) −1.08962e13 −0.0496904
\(406\) 0 0
\(407\) −6.49428e13 −0.288245
\(408\) 0 0
\(409\) −2.55879e14 −1.10550 −0.552748 0.833349i \(-0.686421\pi\)
−0.552748 + 0.833349i \(0.686421\pi\)
\(410\) 0 0
\(411\) −1.34632e14 −0.566262
\(412\) 0 0
\(413\) 3.48352e14 1.42657
\(414\) 0 0
\(415\) 3.77279e13 0.150452
\(416\) 0 0
\(417\) 1.50062e14 0.582804
\(418\) 0 0
\(419\) −2.21825e14 −0.839139 −0.419570 0.907723i \(-0.637819\pi\)
−0.419570 + 0.907723i \(0.637819\pi\)
\(420\) 0 0
\(421\) 9.78949e13 0.360752 0.180376 0.983598i \(-0.442269\pi\)
0.180376 + 0.983598i \(0.442269\pi\)
\(422\) 0 0
\(423\) −5.06940e13 −0.182005
\(424\) 0 0
\(425\) 2.57147e13 0.0899586
\(426\) 0 0
\(427\) 1.32217e14 0.450748
\(428\) 0 0
\(429\) 2.34302e14 0.778503
\(430\) 0 0
\(431\) −1.11415e14 −0.360842 −0.180421 0.983589i \(-0.557746\pi\)
−0.180421 + 0.983589i \(0.557746\pi\)
\(432\) 0 0
\(433\) −3.42045e14 −1.07994 −0.539970 0.841684i \(-0.681564\pi\)
−0.539970 + 0.841684i \(0.681564\pi\)
\(434\) 0 0
\(435\) 1.44681e14 0.445371
\(436\) 0 0
\(437\) 2.13803e14 0.641750
\(438\) 0 0
\(439\) −1.20947e14 −0.354029 −0.177015 0.984208i \(-0.556644\pi\)
−0.177015 + 0.984208i \(0.556644\pi\)
\(440\) 0 0
\(441\) 2.60599e14 0.743980
\(442\) 0 0
\(443\) 1.27316e14 0.354539 0.177270 0.984162i \(-0.443274\pi\)
0.177270 + 0.984162i \(0.443274\pi\)
\(444\) 0 0
\(445\) −1.38773e13 −0.0376985
\(446\) 0 0
\(447\) −1.62504e14 −0.430699
\(448\) 0 0
\(449\) −1.61837e14 −0.418526 −0.209263 0.977859i \(-0.567106\pi\)
−0.209263 + 0.977859i \(0.567106\pi\)
\(450\) 0 0
\(451\) −1.82199e14 −0.459807
\(452\) 0 0
\(453\) −3.35931e14 −0.827390
\(454\) 0 0
\(455\) −2.99198e14 −0.719276
\(456\) 0 0
\(457\) −3.49165e14 −0.819391 −0.409696 0.912222i \(-0.634365\pi\)
−0.409696 + 0.912222i \(0.634365\pi\)
\(458\) 0 0
\(459\) 3.77834e13 0.0865627
\(460\) 0 0
\(461\) −4.49619e14 −1.00575 −0.502875 0.864359i \(-0.667724\pi\)
−0.502875 + 0.864359i \(0.667724\pi\)
\(462\) 0 0
\(463\) −4.21098e13 −0.0919787 −0.0459894 0.998942i \(-0.514644\pi\)
−0.0459894 + 0.998942i \(0.514644\pi\)
\(464\) 0 0
\(465\) 7.67930e13 0.163806
\(466\) 0 0
\(467\) 7.91358e13 0.164866 0.0824328 0.996597i \(-0.473731\pi\)
0.0824328 + 0.996597i \(0.473731\pi\)
\(468\) 0 0
\(469\) 6.06442e14 1.23407
\(470\) 0 0
\(471\) −1.92860e14 −0.383377
\(472\) 0 0
\(473\) 1.34566e15 2.61336
\(474\) 0 0
\(475\) −1.13341e14 −0.215066
\(476\) 0 0
\(477\) −2.08296e14 −0.386215
\(478\) 0 0
\(479\) 9.62318e14 1.74371 0.871853 0.489768i \(-0.162919\pi\)
0.871853 + 0.489768i \(0.162919\pi\)
\(480\) 0 0
\(481\) −9.66132e13 −0.171095
\(482\) 0 0
\(483\) 3.57853e14 0.619435
\(484\) 0 0
\(485\) 6.38914e13 0.108109
\(486\) 0 0
\(487\) −4.57117e14 −0.756168 −0.378084 0.925771i \(-0.623417\pi\)
−0.378084 + 0.925771i \(0.623417\pi\)
\(488\) 0 0
\(489\) 1.13578e14 0.183694
\(490\) 0 0
\(491\) −4.40122e14 −0.696025 −0.348013 0.937490i \(-0.613143\pi\)
−0.348013 + 0.937490i \(0.613143\pi\)
\(492\) 0 0
\(493\) −5.01693e14 −0.775854
\(494\) 0 0
\(495\) 1.48557e14 0.224681
\(496\) 0 0
\(497\) −2.20485e15 −3.26151
\(498\) 0 0
\(499\) −6.36085e14 −0.920369 −0.460185 0.887823i \(-0.652217\pi\)
−0.460185 + 0.887823i \(0.652217\pi\)
\(500\) 0 0
\(501\) −6.98581e14 −0.988802
\(502\) 0 0
\(503\) 4.81639e12 0.00666957 0.00333478 0.999994i \(-0.498939\pi\)
0.00333478 + 0.999994i \(0.498939\pi\)
\(504\) 0 0
\(505\) 4.87334e14 0.660274
\(506\) 0 0
\(507\) −8.69320e13 −0.115249
\(508\) 0 0
\(509\) −5.73829e14 −0.744449 −0.372224 0.928143i \(-0.621405\pi\)
−0.372224 + 0.928143i \(0.621405\pi\)
\(510\) 0 0
\(511\) −2.57705e15 −3.27196
\(512\) 0 0
\(513\) −1.66535e14 −0.206947
\(514\) 0 0
\(515\) −1.59476e14 −0.193980
\(516\) 0 0
\(517\) 6.91155e14 0.822958
\(518\) 0 0
\(519\) 3.71997e14 0.433630
\(520\) 0 0
\(521\) 5.14705e14 0.587422 0.293711 0.955894i \(-0.405110\pi\)
0.293711 + 0.955894i \(0.405110\pi\)
\(522\) 0 0
\(523\) −1.20146e15 −1.34261 −0.671304 0.741182i \(-0.734265\pi\)
−0.671304 + 0.741182i \(0.734265\pi\)
\(524\) 0 0
\(525\) −1.89704e14 −0.207587
\(526\) 0 0
\(527\) −2.66285e14 −0.285357
\(528\) 0 0
\(529\) −6.13454e14 −0.643836
\(530\) 0 0
\(531\) −2.57312e14 −0.264509
\(532\) 0 0
\(533\) −2.71052e14 −0.272931
\(534\) 0 0
\(535\) 3.33327e13 0.0328795
\(536\) 0 0
\(537\) 4.64948e14 0.449310
\(538\) 0 0
\(539\) −3.55298e15 −3.36399
\(540\) 0 0
\(541\) −1.89107e15 −1.75438 −0.877190 0.480143i \(-0.840585\pi\)
−0.877190 + 0.480143i \(0.840585\pi\)
\(542\) 0 0
\(543\) −4.15090e14 −0.377349
\(544\) 0 0
\(545\) 9.76602e13 0.0870035
\(546\) 0 0
\(547\) −1.37400e14 −0.119966 −0.0599830 0.998199i \(-0.519105\pi\)
−0.0599830 + 0.998199i \(0.519105\pi\)
\(548\) 0 0
\(549\) −9.76626e13 −0.0835758
\(550\) 0 0
\(551\) 2.21127e15 1.85485
\(552\) 0 0
\(553\) −1.94377e14 −0.159829
\(554\) 0 0
\(555\) −6.12569e13 −0.0493792
\(556\) 0 0
\(557\) −1.18622e15 −0.937483 −0.468742 0.883335i \(-0.655292\pi\)
−0.468742 + 0.883335i \(0.655292\pi\)
\(558\) 0 0
\(559\) 2.00189e15 1.55123
\(560\) 0 0
\(561\) −5.15134e14 −0.391403
\(562\) 0 0
\(563\) 2.58208e15 1.92386 0.961929 0.273298i \(-0.0881146\pi\)
0.961929 + 0.273298i \(0.0881146\pi\)
\(564\) 0 0
\(565\) 1.23858e14 0.0905020
\(566\) 0 0
\(567\) −2.78738e14 −0.199751
\(568\) 0 0
\(569\) 6.86455e13 0.0482497 0.0241249 0.999709i \(-0.492320\pi\)
0.0241249 + 0.999709i \(0.492320\pi\)
\(570\) 0 0
\(571\) 1.48521e15 1.02397 0.511986 0.858994i \(-0.328910\pi\)
0.511986 + 0.858994i \(0.328910\pi\)
\(572\) 0 0
\(573\) −7.67929e14 −0.519363
\(574\) 0 0
\(575\) −1.79899e14 −0.119359
\(576\) 0 0
\(577\) −1.11682e14 −0.0726966 −0.0363483 0.999339i \(-0.511573\pi\)
−0.0363483 + 0.999339i \(0.511573\pi\)
\(578\) 0 0
\(579\) 6.73830e14 0.430346
\(580\) 0 0
\(581\) 9.65124e14 0.604803
\(582\) 0 0
\(583\) 2.83988e15 1.74631
\(584\) 0 0
\(585\) 2.21004e14 0.133365
\(586\) 0 0
\(587\) −1.03228e15 −0.611347 −0.305673 0.952136i \(-0.598882\pi\)
−0.305673 + 0.952136i \(0.598882\pi\)
\(588\) 0 0
\(589\) 1.17368e15 0.682208
\(590\) 0 0
\(591\) 9.39204e14 0.535832
\(592\) 0 0
\(593\) 5.05946e14 0.283337 0.141668 0.989914i \(-0.454753\pi\)
0.141668 + 0.989914i \(0.454753\pi\)
\(594\) 0 0
\(595\) 6.57813e14 0.361626
\(596\) 0 0
\(597\) 2.47469e14 0.133556
\(598\) 0 0
\(599\) 1.86439e14 0.0987846 0.0493923 0.998779i \(-0.484272\pi\)
0.0493923 + 0.998779i \(0.484272\pi\)
\(600\) 0 0
\(601\) −6.39018e14 −0.332433 −0.166216 0.986089i \(-0.553155\pi\)
−0.166216 + 0.986089i \(0.553155\pi\)
\(602\) 0 0
\(603\) −4.47952e14 −0.228816
\(604\) 0 0
\(605\) −1.13381e15 −0.568706
\(606\) 0 0
\(607\) −3.07440e15 −1.51434 −0.757169 0.653219i \(-0.773418\pi\)
−0.757169 + 0.653219i \(0.773418\pi\)
\(608\) 0 0
\(609\) 3.70112e15 1.79035
\(610\) 0 0
\(611\) 1.02821e15 0.488489
\(612\) 0 0
\(613\) 1.45823e15 0.680447 0.340223 0.940345i \(-0.389497\pi\)
0.340223 + 0.940345i \(0.389497\pi\)
\(614\) 0 0
\(615\) −1.71859e14 −0.0787695
\(616\) 0 0
\(617\) 2.52038e15 1.13474 0.567372 0.823462i \(-0.307960\pi\)
0.567372 + 0.823462i \(0.307960\pi\)
\(618\) 0 0
\(619\) −2.76117e15 −1.22122 −0.610612 0.791930i \(-0.709076\pi\)
−0.610612 + 0.791930i \(0.709076\pi\)
\(620\) 0 0
\(621\) −2.64330e14 −0.114853
\(622\) 0 0
\(623\) −3.54997e14 −0.151545
\(624\) 0 0
\(625\) 9.53674e13 0.0400000
\(626\) 0 0
\(627\) 2.27051e15 0.935734
\(628\) 0 0
\(629\) 2.12413e14 0.0860205
\(630\) 0 0
\(631\) 5.89126e14 0.234448 0.117224 0.993105i \(-0.462600\pi\)
0.117224 + 0.993105i \(0.462600\pi\)
\(632\) 0 0
\(633\) −4.99774e14 −0.195458
\(634\) 0 0
\(635\) 8.23314e13 0.0316453
\(636\) 0 0
\(637\) −5.28565e15 −1.99679
\(638\) 0 0
\(639\) 1.62862e15 0.604736
\(640\) 0 0
\(641\) 1.59787e15 0.583208 0.291604 0.956539i \(-0.405811\pi\)
0.291604 + 0.956539i \(0.405811\pi\)
\(642\) 0 0
\(643\) −4.44445e15 −1.59462 −0.797310 0.603569i \(-0.793745\pi\)
−0.797310 + 0.603569i \(0.793745\pi\)
\(644\) 0 0
\(645\) 1.26929e15 0.447694
\(646\) 0 0
\(647\) 8.54247e14 0.296217 0.148108 0.988971i \(-0.452682\pi\)
0.148108 + 0.988971i \(0.452682\pi\)
\(648\) 0 0
\(649\) 3.50816e15 1.19601
\(650\) 0 0
\(651\) 1.96446e15 0.658486
\(652\) 0 0
\(653\) −2.86428e15 −0.944045 −0.472022 0.881587i \(-0.656476\pi\)
−0.472022 + 0.881587i \(0.656476\pi\)
\(654\) 0 0
\(655\) −6.87242e14 −0.222732
\(656\) 0 0
\(657\) 1.90355e15 0.606674
\(658\) 0 0
\(659\) −4.78135e15 −1.49858 −0.749291 0.662241i \(-0.769606\pi\)
−0.749291 + 0.662241i \(0.769606\pi\)
\(660\) 0 0
\(661\) −5.52275e14 −0.170234 −0.0851172 0.996371i \(-0.527126\pi\)
−0.0851172 + 0.996371i \(0.527126\pi\)
\(662\) 0 0
\(663\) −7.66347e14 −0.232328
\(664\) 0 0
\(665\) −2.89939e15 −0.864545
\(666\) 0 0
\(667\) 3.50982e15 1.02942
\(668\) 0 0
\(669\) −2.42997e15 −0.701062
\(670\) 0 0
\(671\) 1.33152e15 0.377897
\(672\) 0 0
\(673\) −3.31175e15 −0.924645 −0.462323 0.886712i \(-0.652984\pi\)
−0.462323 + 0.886712i \(0.652984\pi\)
\(674\) 0 0
\(675\) 1.40126e14 0.0384900
\(676\) 0 0
\(677\) 6.69181e15 1.80845 0.904223 0.427060i \(-0.140451\pi\)
0.904223 + 0.427060i \(0.140451\pi\)
\(678\) 0 0
\(679\) 1.63442e15 0.434590
\(680\) 0 0
\(681\) 1.64541e15 0.430492
\(682\) 0 0
\(683\) 7.20810e15 1.85570 0.927848 0.372959i \(-0.121657\pi\)
0.927848 + 0.372959i \(0.121657\pi\)
\(684\) 0 0
\(685\) 1.73138e15 0.438625
\(686\) 0 0
\(687\) 2.47696e15 0.617529
\(688\) 0 0
\(689\) 4.22479e15 1.03657
\(690\) 0 0
\(691\) −7.79467e15 −1.88221 −0.941106 0.338112i \(-0.890212\pi\)
−0.941106 + 0.338112i \(0.890212\pi\)
\(692\) 0 0
\(693\) 3.80028e15 0.903197
\(694\) 0 0
\(695\) −1.92981e15 −0.451438
\(696\) 0 0
\(697\) 5.95932e14 0.137220
\(698\) 0 0
\(699\) 1.63890e15 0.371474
\(700\) 0 0
\(701\) 6.71290e15 1.49782 0.748912 0.662669i \(-0.230577\pi\)
0.748912 + 0.662669i \(0.230577\pi\)
\(702\) 0 0
\(703\) −9.36234e14 −0.205651
\(704\) 0 0
\(705\) 6.51929e14 0.140981
\(706\) 0 0
\(707\) 1.24666e16 2.65424
\(708\) 0 0
\(709\) −4.10214e15 −0.859917 −0.429959 0.902849i \(-0.641472\pi\)
−0.429959 + 0.902849i \(0.641472\pi\)
\(710\) 0 0
\(711\) 1.43577e14 0.0296349
\(712\) 0 0
\(713\) 1.86291e15 0.378617
\(714\) 0 0
\(715\) −3.01314e15 −0.603026
\(716\) 0 0
\(717\) 4.28898e15 0.845276
\(718\) 0 0
\(719\) 3.31818e15 0.644008 0.322004 0.946738i \(-0.395644\pi\)
0.322004 + 0.946738i \(0.395644\pi\)
\(720\) 0 0
\(721\) −4.07960e15 −0.779783
\(722\) 0 0
\(723\) −3.34519e15 −0.629738
\(724\) 0 0
\(725\) −1.86061e15 −0.344983
\(726\) 0 0
\(727\) −3.34273e15 −0.610467 −0.305233 0.952278i \(-0.598734\pi\)
−0.305233 + 0.952278i \(0.598734\pi\)
\(728\) 0 0
\(729\) 2.05891e14 0.0370370
\(730\) 0 0
\(731\) −4.40134e15 −0.779901
\(732\) 0 0
\(733\) −6.14966e15 −1.07344 −0.536722 0.843759i \(-0.680338\pi\)
−0.536722 + 0.843759i \(0.680338\pi\)
\(734\) 0 0
\(735\) −3.35133e15 −0.576284
\(736\) 0 0
\(737\) 6.10732e15 1.03462
\(738\) 0 0
\(739\) 4.15701e15 0.693804 0.346902 0.937901i \(-0.387234\pi\)
0.346902 + 0.937901i \(0.387234\pi\)
\(740\) 0 0
\(741\) 3.37776e15 0.555430
\(742\) 0 0
\(743\) 4.90364e15 0.794474 0.397237 0.917716i \(-0.369969\pi\)
0.397237 + 0.917716i \(0.369969\pi\)
\(744\) 0 0
\(745\) 2.08982e15 0.333618
\(746\) 0 0
\(747\) −7.12893e14 −0.112140
\(748\) 0 0
\(749\) 8.52690e14 0.132173
\(750\) 0 0
\(751\) 2.00580e15 0.306385 0.153192 0.988196i \(-0.451045\pi\)
0.153192 + 0.988196i \(0.451045\pi\)
\(752\) 0 0
\(753\) −7.34473e15 −1.10561
\(754\) 0 0
\(755\) 4.32010e15 0.640894
\(756\) 0 0
\(757\) 2.85016e15 0.416718 0.208359 0.978052i \(-0.433188\pi\)
0.208359 + 0.978052i \(0.433188\pi\)
\(758\) 0 0
\(759\) 3.60384e15 0.519321
\(760\) 0 0
\(761\) 8.65962e15 1.22994 0.614969 0.788551i \(-0.289168\pi\)
0.614969 + 0.788551i \(0.289168\pi\)
\(762\) 0 0
\(763\) 2.49827e15 0.349747
\(764\) 0 0
\(765\) −4.85897e14 −0.0670512
\(766\) 0 0
\(767\) 5.21897e15 0.709922
\(768\) 0 0
\(769\) −7.49727e15 −1.00533 −0.502665 0.864481i \(-0.667647\pi\)
−0.502665 + 0.864481i \(0.667647\pi\)
\(770\) 0 0
\(771\) 1.67248e15 0.221086
\(772\) 0 0
\(773\) 2.07867e15 0.270894 0.135447 0.990785i \(-0.456753\pi\)
0.135447 + 0.990785i \(0.456753\pi\)
\(774\) 0 0
\(775\) −9.87564e14 −0.126884
\(776\) 0 0
\(777\) −1.56703e15 −0.198500
\(778\) 0 0
\(779\) −2.62664e15 −0.328053
\(780\) 0 0
\(781\) −2.22045e16 −2.73438
\(782\) 0 0
\(783\) −2.73385e15 −0.331960
\(784\) 0 0
\(785\) 2.48019e15 0.296963
\(786\) 0 0
\(787\) 1.58421e16 1.87047 0.935235 0.354026i \(-0.115188\pi\)
0.935235 + 0.354026i \(0.115188\pi\)
\(788\) 0 0
\(789\) 8.01774e15 0.933531
\(790\) 0 0
\(791\) 3.16844e15 0.363810
\(792\) 0 0
\(793\) 1.98086e15 0.224311
\(794\) 0 0
\(795\) 2.67870e15 0.299161
\(796\) 0 0
\(797\) −4.58469e15 −0.504997 −0.252499 0.967597i \(-0.581252\pi\)
−0.252499 + 0.967597i \(0.581252\pi\)
\(798\) 0 0
\(799\) −2.26061e15 −0.245594
\(800\) 0 0
\(801\) 2.62221e14 0.0280988
\(802\) 0 0
\(803\) −2.59528e16 −2.74315
\(804\) 0 0
\(805\) −4.60202e15 −0.479812
\(806\) 0 0
\(807\) −7.22872e15 −0.743459
\(808\) 0 0
\(809\) −1.72813e15 −0.175331 −0.0876656 0.996150i \(-0.527941\pi\)
−0.0876656 + 0.996150i \(0.527941\pi\)
\(810\) 0 0
\(811\) −4.24638e14 −0.0425015 −0.0212507 0.999774i \(-0.506765\pi\)
−0.0212507 + 0.999774i \(0.506765\pi\)
\(812\) 0 0
\(813\) 1.04590e16 1.03274
\(814\) 0 0
\(815\) −1.46062e15 −0.142289
\(816\) 0 0
\(817\) 1.93994e16 1.86452
\(818\) 0 0
\(819\) 5.65355e15 0.536117
\(820\) 0 0
\(821\) −1.96517e16 −1.83871 −0.919354 0.393431i \(-0.871288\pi\)
−0.919354 + 0.393431i \(0.871288\pi\)
\(822\) 0 0
\(823\) −5.95701e14 −0.0549957 −0.0274979 0.999622i \(-0.508754\pi\)
−0.0274979 + 0.999622i \(0.508754\pi\)
\(824\) 0 0
\(825\) −1.91046e15 −0.174037
\(826\) 0 0
\(827\) 1.40975e16 1.26725 0.633626 0.773639i \(-0.281566\pi\)
0.633626 + 0.773639i \(0.281566\pi\)
\(828\) 0 0
\(829\) −7.87187e15 −0.698277 −0.349139 0.937071i \(-0.613526\pi\)
−0.349139 + 0.937071i \(0.613526\pi\)
\(830\) 0 0
\(831\) 3.56497e15 0.312068
\(832\) 0 0
\(833\) 1.16210e16 1.00391
\(834\) 0 0
\(835\) 8.98381e15 0.765923
\(836\) 0 0
\(837\) −1.45106e15 −0.122094
\(838\) 0 0
\(839\) −6.12117e15 −0.508327 −0.254164 0.967161i \(-0.581800\pi\)
−0.254164 + 0.967161i \(0.581800\pi\)
\(840\) 0 0
\(841\) 2.41000e16 1.97533
\(842\) 0 0
\(843\) 1.01666e16 0.822476
\(844\) 0 0
\(845\) 1.11795e15 0.0892713
\(846\) 0 0
\(847\) −2.90043e16 −2.28615
\(848\) 0 0
\(849\) −5.69208e15 −0.442873
\(850\) 0 0
\(851\) −1.48603e15 −0.114134
\(852\) 0 0
\(853\) 2.83032e15 0.214594 0.107297 0.994227i \(-0.465781\pi\)
0.107297 + 0.994227i \(0.465781\pi\)
\(854\) 0 0
\(855\) 2.14165e15 0.160300
\(856\) 0 0
\(857\) −4.83193e14 −0.0357048 −0.0178524 0.999841i \(-0.505683\pi\)
−0.0178524 + 0.999841i \(0.505683\pi\)
\(858\) 0 0
\(859\) −1.23886e16 −0.903775 −0.451888 0.892075i \(-0.649249\pi\)
−0.451888 + 0.892075i \(0.649249\pi\)
\(860\) 0 0
\(861\) −4.39635e15 −0.316647
\(862\) 0 0
\(863\) 2.26458e16 1.61038 0.805191 0.593016i \(-0.202063\pi\)
0.805191 + 0.593016i \(0.202063\pi\)
\(864\) 0 0
\(865\) −4.78391e15 −0.335888
\(866\) 0 0
\(867\) −6.64319e15 −0.460544
\(868\) 0 0
\(869\) −1.95751e15 −0.133997
\(870\) 0 0
\(871\) 9.08565e15 0.614124
\(872\) 0 0
\(873\) −1.20727e15 −0.0805799
\(874\) 0 0
\(875\) 2.43961e15 0.160797
\(876\) 0 0
\(877\) −8.89622e15 −0.579039 −0.289519 0.957172i \(-0.593495\pi\)
−0.289519 + 0.957172i \(0.593495\pi\)
\(878\) 0 0
\(879\) −1.77696e15 −0.114219
\(880\) 0 0
\(881\) −1.82720e16 −1.15989 −0.579946 0.814655i \(-0.696927\pi\)
−0.579946 + 0.814655i \(0.696927\pi\)
\(882\) 0 0
\(883\) −8.75758e15 −0.549035 −0.274518 0.961582i \(-0.588518\pi\)
−0.274518 + 0.961582i \(0.588518\pi\)
\(884\) 0 0
\(885\) 3.30905e15 0.204888
\(886\) 0 0
\(887\) −8.52159e15 −0.521124 −0.260562 0.965457i \(-0.583908\pi\)
−0.260562 + 0.965457i \(0.583908\pi\)
\(888\) 0 0
\(889\) 2.10613e15 0.127212
\(890\) 0 0
\(891\) −2.80709e15 −0.167467
\(892\) 0 0
\(893\) 9.96390e15 0.587146
\(894\) 0 0
\(895\) −5.97928e15 −0.348034
\(896\) 0 0
\(897\) 5.36132e15 0.308257
\(898\) 0 0
\(899\) 1.92673e16 1.09432
\(900\) 0 0
\(901\) −9.28858e15 −0.521150
\(902\) 0 0
\(903\) 3.24699e16 1.79969
\(904\) 0 0
\(905\) 5.33809e15 0.292293
\(906\) 0 0
\(907\) −2.10550e16 −1.13898 −0.569490 0.821998i \(-0.692859\pi\)
−0.569490 + 0.821998i \(0.692859\pi\)
\(908\) 0 0
\(909\) −9.20851e15 −0.492139
\(910\) 0 0
\(911\) −3.04479e16 −1.60771 −0.803854 0.594827i \(-0.797220\pi\)
−0.803854 + 0.594827i \(0.797220\pi\)
\(912\) 0 0
\(913\) 9.71950e15 0.507055
\(914\) 0 0
\(915\) 1.25595e15 0.0647375
\(916\) 0 0
\(917\) −1.75805e16 −0.895363
\(918\) 0 0
\(919\) 4.47695e15 0.225293 0.112646 0.993635i \(-0.464067\pi\)
0.112646 + 0.993635i \(0.464067\pi\)
\(920\) 0 0
\(921\) 1.30549e16 0.649151
\(922\) 0 0
\(923\) −3.30328e16 −1.62307
\(924\) 0 0
\(925\) 7.87769e14 0.0382489
\(926\) 0 0
\(927\) 3.01342e15 0.144584
\(928\) 0 0
\(929\) 2.63310e16 1.24848 0.624238 0.781234i \(-0.285409\pi\)
0.624238 + 0.781234i \(0.285409\pi\)
\(930\) 0 0
\(931\) −5.12208e16 −2.40007
\(932\) 0 0
\(933\) −1.31562e16 −0.609228
\(934\) 0 0
\(935\) 6.62466e15 0.303179
\(936\) 0 0
\(937\) 1.18259e16 0.534894 0.267447 0.963573i \(-0.413820\pi\)
0.267447 + 0.963573i \(0.413820\pi\)
\(938\) 0 0
\(939\) −1.04422e15 −0.0466802
\(940\) 0 0
\(941\) 6.96003e15 0.307517 0.153758 0.988108i \(-0.450862\pi\)
0.153758 + 0.988108i \(0.450862\pi\)
\(942\) 0 0
\(943\) −4.16911e15 −0.182066
\(944\) 0 0
\(945\) 3.58459e15 0.154727
\(946\) 0 0
\(947\) 3.38501e16 1.44423 0.722113 0.691775i \(-0.243171\pi\)
0.722113 + 0.691775i \(0.243171\pi\)
\(948\) 0 0
\(949\) −3.86091e16 −1.62827
\(950\) 0 0
\(951\) −6.85084e15 −0.285595
\(952\) 0 0
\(953\) 4.50062e16 1.85465 0.927323 0.374262i \(-0.122104\pi\)
0.927323 + 0.374262i \(0.122104\pi\)
\(954\) 0 0
\(955\) 9.87563e15 0.402297
\(956\) 0 0
\(957\) 3.72730e16 1.50099
\(958\) 0 0
\(959\) 4.42907e16 1.76323
\(960\) 0 0
\(961\) −1.51819e16 −0.597513
\(962\) 0 0
\(963\) −6.29844e14 −0.0245069
\(964\) 0 0
\(965\) −8.66551e15 −0.333345
\(966\) 0 0
\(967\) 1.48359e16 0.564246 0.282123 0.959378i \(-0.408961\pi\)
0.282123 + 0.959378i \(0.408961\pi\)
\(968\) 0 0
\(969\) −7.42632e15 −0.279250
\(970\) 0 0
\(971\) −1.14414e16 −0.425378 −0.212689 0.977120i \(-0.568222\pi\)
−0.212689 + 0.977120i \(0.568222\pi\)
\(972\) 0 0
\(973\) −4.93669e16 −1.81474
\(974\) 0 0
\(975\) −2.84213e15 −0.103304
\(976\) 0 0
\(977\) −2.64437e16 −0.950390 −0.475195 0.879881i \(-0.657622\pi\)
−0.475195 + 0.879881i \(0.657622\pi\)
\(978\) 0 0
\(979\) −3.57508e15 −0.127052
\(980\) 0 0
\(981\) −1.84536e15 −0.0648486
\(982\) 0 0
\(983\) −3.63656e16 −1.26371 −0.631854 0.775088i \(-0.717706\pi\)
−0.631854 + 0.775088i \(0.717706\pi\)
\(984\) 0 0
\(985\) −1.20782e16 −0.415054
\(986\) 0 0
\(987\) 1.66771e16 0.566731
\(988\) 0 0
\(989\) 3.07915e16 1.03479
\(990\) 0 0
\(991\) −5.09067e16 −1.69188 −0.845941 0.533276i \(-0.820961\pi\)
−0.845941 + 0.533276i \(0.820961\pi\)
\(992\) 0 0
\(993\) 2.41899e16 0.795084
\(994\) 0 0
\(995\) −3.18247e15 −0.103452
\(996\) 0 0
\(997\) −4.28291e16 −1.37694 −0.688471 0.725264i \(-0.741718\pi\)
−0.688471 + 0.725264i \(0.741718\pi\)
\(998\) 0 0
\(999\) 1.15749e15 0.0368051
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.12.a.m.1.1 2
4.3 odd 2 15.12.a.c.1.2 2
12.11 even 2 45.12.a.c.1.1 2
20.3 even 4 75.12.b.d.49.2 4
20.7 even 4 75.12.b.d.49.3 4
20.19 odd 2 75.12.a.c.1.1 2
60.23 odd 4 225.12.b.i.199.3 4
60.47 odd 4 225.12.b.i.199.2 4
60.59 even 2 225.12.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.12.a.c.1.2 2 4.3 odd 2
45.12.a.c.1.1 2 12.11 even 2
75.12.a.c.1.1 2 20.19 odd 2
75.12.b.d.49.2 4 20.3 even 4
75.12.b.d.49.3 4 20.7 even 4
225.12.a.i.1.2 2 60.59 even 2
225.12.b.i.199.2 4 60.47 odd 4
225.12.b.i.199.3 4 60.23 odd 4
240.12.a.m.1.1 2 1.1 even 1 trivial