Properties

Label 24.8.f.a
Level 24
Weight 8
Character orbit 24.f
Analytic conductor 7.497
Analytic rank 0
Dimension 2
CM disc. -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) = \( 8 \)
Character orbit: \([\chi]\) = 24.f (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(7.49724061162\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 \beta q^{2} + ( -43 + 13 \beta ) q^{3} -128 q^{4} + ( -208 - 344 \beta ) q^{6} -1024 \beta q^{8} + ( 1511 - 1118 \beta ) q^{9} +O(q^{10})\) \( q + 8 \beta q^{2} + ( -43 + 13 \beta ) q^{3} -128 q^{4} + ( -208 - 344 \beta ) q^{6} -1024 \beta q^{8} + ( 1511 - 1118 \beta ) q^{9} -362 \beta q^{11} + ( 5504 - 1664 \beta ) q^{12} + 16384 q^{16} -23972 \beta q^{17} + ( 17888 + 12088 \beta ) q^{18} -59722 q^{19} + 5792 q^{22} + ( 26624 + 44032 \beta ) q^{24} -78125 q^{25} + ( -35905 + 67717 \beta ) q^{27} + 131072 \beta q^{32} + ( 9412 + 15566 \beta ) q^{33} + 383552 q^{34} + ( -193408 + 143104 \beta ) q^{36} -477776 \beta q^{38} -601208 \beta q^{41} -220510 q^{43} + 46336 \beta q^{44} + ( -704512 + 212992 \beta ) q^{48} + 823543 q^{49} -625000 \beta q^{50} + ( 623272 + 1030796 \beta ) q^{51} + ( -1083472 - 287240 \beta ) q^{54} + ( 2568046 - 776386 \beta ) q^{57} + 2108530 \beta q^{59} -2097152 q^{64} + ( -249056 + 75296 \beta ) q^{66} -3851302 q^{67} + 3068416 \beta q^{68} + ( -2289664 - 1547264 \beta ) q^{72} -4865614 q^{73} + ( 3359375 - 1015625 \beta ) q^{75} + 7644416 q^{76} + ( -216727 - 3378596 \beta ) q^{81} + 9619328 q^{82} -6535226 \beta q^{83} -1764080 \beta q^{86} -741376 q^{88} + 7965436 \beta q^{89} + ( -3407872 - 5636096 \beta ) q^{96} -9938890 q^{97} + 6588344 \beta q^{98} + ( -809432 - 546982 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 86q^{3} - 256q^{4} - 416q^{6} + 3022q^{9} + O(q^{10}) \) \( 2q - 86q^{3} - 256q^{4} - 416q^{6} + 3022q^{9} + 11008q^{12} + 32768q^{16} + 35776q^{18} - 119444q^{19} + 11584q^{22} + 53248q^{24} - 156250q^{25} - 71810q^{27} + 18824q^{33} + 767104q^{34} - 386816q^{36} - 441020q^{43} - 1409024q^{48} + 1647086q^{49} + 1246544q^{51} - 2166944q^{54} + 5136092q^{57} - 4194304q^{64} - 498112q^{66} - 7702604q^{67} - 4579328q^{72} - 9731228q^{73} + 6718750q^{75} + 15288832q^{76} - 433454q^{81} + 19238656q^{82} - 1482752q^{88} - 6815744q^{96} - 19877780q^{97} - 1618864q^{99} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
1.41421i
1.41421i
11.3137i −43.0000 18.3848i −128.000 0 −208.000 + 486.489i 0 1448.15i 1511.00 + 1581.09i 0
11.2 11.3137i −43.0000 + 18.3848i −128.000 0 −208.000 486.489i 0 1448.15i 1511.00 1581.09i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
8.d Odd 1 CM by \(\Q(\sqrt{-2}) \) yes
3.b Odd 1 yes
24.f Even 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{8}^{\mathrm{new}}(24, [\chi])\).