Properties

Label 24.8
Level 24
Weight 8
Dimension 43
Nonzero newspaces 3
Newform subspaces 7
Sturm bound 256
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 7 \)
Sturm bound: \(256\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(24))\).

Total New Old
Modular forms 124 47 77
Cusp forms 100 43 57
Eisenstein series 24 4 20

Trace form

\( 43 q - 14 q^{2} + 25 q^{3} - 236 q^{4} - 446 q^{5} - 14 q^{6} + 3052 q^{7} - 428 q^{8} - 8021 q^{9} - 284 q^{10} + 3028 q^{11} - 5144 q^{12} + 5154 q^{13} + 4636 q^{14} - 24138 q^{15} - 58208 q^{16} + 35626 q^{17}+ \cdots + 16638212 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(24))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
24.8.a \(\chi_{24}(1, \cdot)\) 24.8.a.a 1 1
24.8.a.b 1
24.8.a.c 1
24.8.c \(\chi_{24}(23, \cdot)\) None 0 1
24.8.d \(\chi_{24}(13, \cdot)\) 24.8.d.a 14 1
24.8.f \(\chi_{24}(11, \cdot)\) 24.8.f.a 2 1
24.8.f.b 4
24.8.f.c 20

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(24))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(24)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)