Defining parameters
| Level: | \( N \) | \(=\) | \( 24 = 2^{3} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 24.f (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(24, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 22 | 22 | 0 |
| Cusp forms | 18 | 18 | 0 |
| Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(24, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 24.6.f.a | $2$ | $3.849$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-2}) \) | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+4\beta q^{2}+(-1+11\beta )q^{3}-2^{5}q^{4}+\cdots\) |
| 24.6.f.b | $16$ | $3.849$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-\beta _{1}+\beta _{3})q^{3}+(3+\beta _{2}+\cdots)q^{4}+\cdots\) |