Properties

Label 24.6.f
Level $24$
Weight $6$
Character orbit 24.f
Rep. character $\chi_{24}(11,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 24.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(24, [\chi])\).

Total New Old
Modular forms 22 22 0
Cusp forms 18 18 0
Eisenstein series 4 4 0

Trace form

\( 18 q - 2 q^{3} - 12 q^{4} + 88 q^{6} - 2 q^{9} + 168 q^{10} - 92 q^{12} - 216 q^{16} + 376 q^{18} - 2364 q^{19} + 480 q^{22} - 2360 q^{24} + 6246 q^{25} - 3734 q^{27} - 6864 q^{28} + 6672 q^{30} + 3320 q^{33}+ \cdots - 51664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(24, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
24.6.f.a 24.f 24.f $2$ $3.849$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-2}) \) 24.6.f.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+4\beta q^{2}+(-1+11\beta )q^{3}-2^{5}q^{4}+\cdots\)
24.6.f.b 24.f 24.f $16$ $3.849$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 24.6.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-\beta _{1}+\beta _{3})q^{3}+(3+\beta _{2}+\cdots)q^{4}+\cdots\)