Properties

Label 24.6.a
Level $24$
Weight $6$
Character orbit 24.a
Rep. character $\chi_{24}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $24$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 24.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(24\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(24))\).

Total New Old
Modular forms 24 3 21
Cusp forms 16 3 13
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(5\)\(1\)\(4\)\(3\)\(1\)\(2\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(6\)\(1\)\(5\)\(4\)\(1\)\(3\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(7\)\(1\)\(6\)\(5\)\(1\)\(4\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(6\)\(0\)\(6\)\(4\)\(0\)\(4\)\(2\)\(0\)\(2\)
Plus space\(+\)\(11\)\(1\)\(10\)\(7\)\(1\)\(6\)\(4\)\(0\)\(4\)
Minus space\(-\)\(13\)\(2\)\(11\)\(9\)\(2\)\(7\)\(4\)\(0\)\(4\)

Trace form

\( 3 q - 9 q^{3} + 98 q^{5} + 24 q^{7} + 243 q^{9} + 20 q^{11} - 102 q^{13} - 198 q^{15} - 266 q^{17} - 5364 q^{19} + 1944 q^{21} + 4904 q^{23} + 2061 q^{25} - 729 q^{27} - 10422 q^{29} + 1920 q^{31} + 9252 q^{33}+ \cdots + 1620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(24))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
24.6.a.a 24.a 1.a $1$ $3.849$ \(\Q\) None 24.6.a.a \(0\) \(-9\) \(-34\) \(-240\) $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}-34q^{5}-240q^{7}+3^{4}q^{9}+\cdots\)
24.6.a.b 24.a 1.a $1$ $3.849$ \(\Q\) None 24.6.a.b \(0\) \(-9\) \(94\) \(144\) $-$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+94q^{5}+12^{2}q^{7}+3^{4}q^{9}+\cdots\)
24.6.a.c 24.a 1.a $1$ $3.849$ \(\Q\) None 24.6.a.c \(0\) \(9\) \(38\) \(120\) $+$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+38q^{5}+120q^{7}+3^{4}q^{9}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(24))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(24)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)