Properties

Label 24.3.h
Level $24$
Weight $3$
Character orbit 24.h
Rep. character $\chi_{24}(5,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $3$
Sturm bound $12$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 24.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(12\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(24, [\chi])\).

Total New Old
Modular forms 10 10 0
Cusp forms 6 6 0
Eisenstein series 4 4 0

Trace form

\( 6 q - 4 q^{4} - 8 q^{6} - 4 q^{7} - 2 q^{9} - 24 q^{10} + 28 q^{12} - 20 q^{15} + 40 q^{16} + 56 q^{18} + 64 q^{22} - 88 q^{24} - 14 q^{25} - 128 q^{28} - 112 q^{30} + 60 q^{31} - 12 q^{33} - 112 q^{34}+ \cdots + 92 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(24, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
24.3.h.a 24.h 24.h $1$ $0.654$ \(\Q\) \(\Q(\sqrt{-6}) \) 24.3.h.a \(-2\) \(3\) \(2\) \(-10\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}+3q^{3}+4q^{4}+2q^{5}-6q^{6}+\cdots\)
24.3.h.b 24.h 24.h $1$ $0.654$ \(\Q\) \(\Q(\sqrt{-6}) \) 24.3.h.a \(2\) \(-3\) \(-2\) \(-10\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}-3q^{3}+4q^{4}-2q^{5}-6q^{6}+\cdots\)
24.3.h.c 24.h 24.h $4$ $0.654$ \(\Q(\sqrt{2}, \sqrt{-7})\) None 24.3.h.c \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-\beta _{2}-\beta _{3})q^{3}+(-3+\beta _{3})q^{4}+\cdots\)