Defining parameters
Level: | \( N \) | \(=\) | \( 24 = 2^{3} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 24.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(12\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(24, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 10 | 0 |
Cusp forms | 6 | 6 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(24, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
24.3.h.a | $1$ | $0.654$ | \(\Q\) | \(\Q(\sqrt{-6}) \) | \(-2\) | \(3\) | \(2\) | \(-10\) | \(q-2q^{2}+3q^{3}+4q^{4}+2q^{5}-6q^{6}+\cdots\) |
24.3.h.b | $1$ | $0.654$ | \(\Q\) | \(\Q(\sqrt{-6}) \) | \(2\) | \(-3\) | \(-2\) | \(-10\) | \(q+2q^{2}-3q^{3}+4q^{4}-2q^{5}-6q^{6}+\cdots\) |
24.3.h.c | $4$ | $0.654$ | \(\Q(\sqrt{2}, \sqrt{-7})\) | None | \(0\) | \(0\) | \(0\) | \(16\) | \(q+\beta _{1}q^{2}+(-\beta _{2}-\beta _{3})q^{3}+(-3+\beta _{3})q^{4}+\cdots\) |