Properties

Label 24.3.b.a
Level $24$
Weight $3$
Character orbit 24.b
Analytic conductor $0.654$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,3,Mod(19,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 24.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.653952634465\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.4752.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} - 6x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1) q^{2} + \beta_{2} q^{3} + ( - \beta_{3} - \beta_{2} - 2) q^{4} + 2 \beta_{3} q^{5} + (\beta_{3} + \beta_1 - 2) q^{6} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots + 2) q^{7} + ( - 2 \beta_{3} + 4 \beta_{2} - 2 \beta_1) q^{8}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 8 q^{4} - 6 q^{6} - 4 q^{8} + 12 q^{9} + 12 q^{10} - 32 q^{11} - 12 q^{12} + 36 q^{14} - 8 q^{16} - 8 q^{17} + 6 q^{18} + 32 q^{19} + 72 q^{20} - 16 q^{22} + 36 q^{24} - 44 q^{25} - 96 q^{26}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} - 6x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 3\nu^{2} + 4\nu + 2 ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 6 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} + 8\nu - 6 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} + 2\beta _1 - 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{3} - 7\beta_{2} + 2\beta _1 + 8 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.866025 0.719687i
0.866025 + 0.719687i
−0.866025 + 1.99551i
−0.866025 1.99551i
−0.366025 1.96622i 1.73205 −3.73205 + 1.43937i 2.87875i −0.633975 3.40559i 10.7436i 4.19615 + 6.81119i 3.00000 −5.66025 + 1.05369i
19.2 −0.366025 + 1.96622i 1.73205 −3.73205 1.43937i 2.87875i −0.633975 + 3.40559i 10.7436i 4.19615 6.81119i 3.00000 −5.66025 1.05369i
19.3 1.36603 1.46081i −1.73205 −0.267949 3.99102i 7.98203i −2.36603 + 2.53020i 2.13878i −6.19615 5.06040i 3.00000 11.6603 + 10.9037i
19.4 1.36603 + 1.46081i −1.73205 −0.267949 + 3.99102i 7.98203i −2.36603 2.53020i 2.13878i −6.19615 + 5.06040i 3.00000 11.6603 10.9037i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 24.3.b.a 4
3.b odd 2 1 72.3.b.b 4
4.b odd 2 1 96.3.b.a 4
5.b even 2 1 600.3.g.a 4
5.c odd 4 2 600.3.p.a 8
8.b even 2 1 96.3.b.a 4
8.d odd 2 1 inner 24.3.b.a 4
12.b even 2 1 288.3.b.b 4
16.e even 4 2 768.3.g.h 8
16.f odd 4 2 768.3.g.h 8
20.d odd 2 1 2400.3.g.a 4
20.e even 4 2 2400.3.p.a 8
24.f even 2 1 72.3.b.b 4
24.h odd 2 1 288.3.b.b 4
40.e odd 2 1 600.3.g.a 4
40.f even 2 1 2400.3.g.a 4
40.i odd 4 2 2400.3.p.a 8
40.k even 4 2 600.3.p.a 8
48.i odd 4 2 2304.3.g.z 8
48.k even 4 2 2304.3.g.z 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.3.b.a 4 1.a even 1 1 trivial
24.3.b.a 4 8.d odd 2 1 inner
72.3.b.b 4 3.b odd 2 1
72.3.b.b 4 24.f even 2 1
96.3.b.a 4 4.b odd 2 1
96.3.b.a 4 8.b even 2 1
288.3.b.b 4 12.b even 2 1
288.3.b.b 4 24.h odd 2 1
600.3.g.a 4 5.b even 2 1
600.3.g.a 4 40.e odd 2 1
600.3.p.a 8 5.c odd 4 2
600.3.p.a 8 40.k even 4 2
768.3.g.h 8 16.e even 4 2
768.3.g.h 8 16.f odd 4 2
2304.3.g.z 8 48.i odd 4 2
2304.3.g.z 8 48.k even 4 2
2400.3.g.a 4 20.d odd 2 1
2400.3.g.a 4 40.f even 2 1
2400.3.p.a 8 20.e even 4 2
2400.3.p.a 8 40.i odd 4 2

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(24, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 72T^{2} + 528 \) Copy content Toggle raw display
$7$ \( T^{4} + 120T^{2} + 528 \) Copy content Toggle raw display
$11$ \( (T + 8)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 384 T^{2} + 33792 \) Copy content Toggle raw display
$17$ \( (T^{2} + 4 T - 188)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 16 T + 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 480T^{2} + 8448 \) Copy content Toggle raw display
$29$ \( T^{4} + 1608T^{2} + 528 \) Copy content Toggle raw display
$31$ \( T^{4} + 3384 T^{2} + 279312 \) Copy content Toggle raw display
$37$ \( T^{4} + 864 T^{2} + 76032 \) Copy content Toggle raw display
$41$ \( (T^{2} - 20 T - 1628)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 16 T - 368)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 3552 T^{2} + 8448 \) Copy content Toggle raw display
$53$ \( T^{4} + 1800 T^{2} + 803088 \) Copy content Toggle raw display
$59$ \( (T^{2} + 64 T + 592)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 3552 T^{2} + 8448 \) Copy content Toggle raw display
$67$ \( (T^{2} + 128 T + 3664)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 8928 T^{2} + 12849408 \) Copy content Toggle raw display
$73$ \( (T^{2} - 100 T - 572)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 7416 T^{2} + 10797072 \) Copy content Toggle raw display
$83$ \( (T^{2} - 80 T + 832)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 100 T - 4412)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 28 T - 6716)^{2} \) Copy content Toggle raw display
show more
show less