Defining parameters
Level: | \( N \) | = | \( 24 = 2^{3} \cdot 3 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 3 \) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(24))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 16 | 28 |
Cusp forms | 20 | 12 | 8 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(24))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(24)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)