Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [24,22,Mod(11,24)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(24, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("24.11");
S:= CuspForms(chi, 22);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 24 = 2^{3} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 24.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(67.0745626289\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −1447.69 | − | 36.5854i | 83218.8 | − | 59455.7i | 2.09448e6 | + | 105929.i | 2.15453e7 | −1.22650e8 | + | 8.30290e7i | 7.78742e8i | −3.02828e9 | − | 2.29979e8i | 3.39039e9 | − | 9.89567e9i | −3.11909e10 | − | 7.88241e8i | ||||
11.2 | −1447.69 | + | 36.5854i | 83218.8 | + | 59455.7i | 2.09448e6 | − | 105929.i | 2.15453e7 | −1.22650e8 | − | 8.30290e7i | − | 7.78742e8i | −3.02828e9 | + | 2.29979e8i | 3.39039e9 | + | 9.89567e9i | −3.11909e10 | + | 7.88241e8i | |||
11.3 | −1447.32 | − | 49.2747i | 27542.1 | − | 98497.6i | 2.09230e6 | + | 142632.i | −3.60058e7 | −4.47156e7 | + | 1.41200e8i | 5.30004e8i | −3.02119e9 | − | 3.09531e8i | −8.94322e9 | − | 5.42566e9i | 5.21117e10 | + | 1.77417e9i | ||||
11.4 | −1447.32 | + | 49.2747i | 27542.1 | + | 98497.6i | 2.09230e6 | − | 142632.i | −3.60058e7 | −4.47156e7 | − | 1.41200e8i | − | 5.30004e8i | −3.02119e9 | + | 3.09531e8i | −8.94322e9 | + | 5.42566e9i | 5.21117e10 | − | 1.77417e9i | |||
11.5 | −1432.54 | − | 212.110i | −18617.4 | − | 100567.i | 2.00717e6 | + | 607710.i | 1.24708e7 | 5.33885e6 | + | 1.48015e8i | − | 1.44834e9i | −2.74644e9 | − | 1.29631e9i | −9.76714e9 | + | 3.74460e9i | −1.78649e10 | − | 2.64519e9i | |||
11.6 | −1432.54 | + | 212.110i | −18617.4 | + | 100567.i | 2.00717e6 | − | 607710.i | 1.24708e7 | 5.33885e6 | − | 1.48015e8i | 1.44834e9i | −2.74644e9 | + | 1.29631e9i | −9.76714e9 | − | 3.74460e9i | −1.78649e10 | + | 2.64519e9i | ||||
11.7 | −1407.10 | − | 342.382i | −94251.2 | − | 39712.2i | 1.86270e6 | + | 963530.i | −1.78035e7 | 1.19024e8 | + | 8.81488e7i | 2.30554e8i | −2.29111e9 | − | 1.99354e9i | 7.30624e9 | + | 7.48584e9i | 2.50513e10 | + | 6.09560e9i | ||||
11.8 | −1407.10 | + | 342.382i | −94251.2 | + | 39712.2i | 1.86270e6 | − | 963530.i | −1.78035e7 | 1.19024e8 | − | 8.81488e7i | − | 2.30554e8i | −2.29111e9 | + | 1.99354e9i | 7.30624e9 | − | 7.48584e9i | 2.50513e10 | − | 6.09560e9i | |||
11.9 | −1356.69 | − | 506.515i | −91907.9 | + | 44869.7i | 1.58404e6 | + | 1.37436e6i | 3.41502e7 | 1.47417e8 | − | 1.43212e7i | 1.23766e8i | −1.45290e9 | − | 2.66692e9i | 6.43378e9 | − | 8.24775e9i | −4.63311e10 | − | 1.72976e10i | ||||
11.10 | −1356.69 | + | 506.515i | −91907.9 | − | 44869.7i | 1.58404e6 | − | 1.37436e6i | 3.41502e7 | 1.47417e8 | + | 1.43212e7i | − | 1.23766e8i | −1.45290e9 | + | 2.66692e9i | 6.43378e9 | + | 8.24775e9i | −4.63311e10 | + | 1.72976e10i | |||
11.11 | −1278.89 | − | 679.406i | −43276.9 | + | 92668.5i | 1.17397e6 | + | 1.73777e6i | −3.88324e6 | 1.18306e8 | − | 8.91103e7i | − | 7.66700e8i | −3.20723e8 | − | 3.02002e9i | −6.71457e9 | − | 8.02082e9i | 4.96624e9 | + | 2.63830e9i | |||
11.12 | −1278.89 | + | 679.406i | −43276.9 | − | 92668.5i | 1.17397e6 | − | 1.73777e6i | −3.88324e6 | 1.18306e8 | + | 8.91103e7i | 7.66700e8i | −3.20723e8 | + | 3.02002e9i | −6.71457e9 | + | 8.02082e9i | 4.96624e9 | − | 2.63830e9i | ||||
11.13 | −1259.59 | − | 714.555i | 99544.4 | − | 23479.2i | 1.07597e6 | + | 1.80009e6i | −1.95847e7 | −1.42162e8 | − | 4.15557e7i | − | 3.09866e8i | −6.90211e7 | − | 3.03622e9i | 9.35780e9 | − | 4.67445e9i | 2.46687e10 | + | 1.39943e10i | |||
11.14 | −1259.59 | + | 714.555i | 99544.4 | + | 23479.2i | 1.07597e6 | − | 1.80009e6i | −1.95847e7 | −1.42162e8 | + | 4.15557e7i | 3.09866e8i | −6.90211e7 | + | 3.03622e9i | 9.35780e9 | + | 4.67445e9i | 2.46687e10 | − | 1.39943e10i | ||||
11.15 | −1239.13 | − | 749.479i | 71611.8 | + | 73021.3i | 973714. | + | 1.85740e6i | −183918. | −3.40080e7 | − | 1.44154e8i | 8.83191e8i | 1.85527e8 | − | 3.03133e9i | −2.03868e8 | + | 1.04584e10i | 2.27898e8 | + | 1.37843e8i | ||||
11.16 | −1239.13 | + | 749.479i | 71611.8 | − | 73021.3i | 973714. | − | 1.85740e6i | −183918. | −3.40080e7 | + | 1.44154e8i | − | 8.83191e8i | 1.85527e8 | + | 3.03133e9i | −2.03868e8 | − | 1.04584e10i | 2.27898e8 | − | 1.37843e8i | |||
11.17 | −1162.26 | − | 863.883i | 2559.62 | − | 102244.i | 604564. | + | 2.00812e6i | 2.80198e7 | −9.13017e7 | + | 1.16623e8i | 6.76763e8i | 1.03212e9 | − | 2.85624e9i | −1.04472e10 | − | 5.23411e8i | −3.25664e10 | − | 2.42058e10i | ||||
11.18 | −1162.26 | + | 863.883i | 2559.62 | + | 102244.i | 604564. | − | 2.00812e6i | 2.80198e7 | −9.13017e7 | − | 1.16623e8i | − | 6.76763e8i | 1.03212e9 | + | 2.85624e9i | −1.04472e10 | + | 5.23411e8i | −3.25664e10 | + | 2.42058e10i | |||
11.19 | −1052.87 | − | 994.292i | −76264.6 | − | 68147.4i | 119920. | + | 2.09372e6i | 1.46521e6 | 1.25383e7 | + | 1.47580e8i | 5.38101e8i | 1.95551e9 | − | 2.32365e9i | 1.17221e9 | + | 1.03945e10i | −1.54268e9 | − | 1.45685e9i | ||||
11.20 | −1052.87 | + | 994.292i | −76264.6 | + | 68147.4i | 119920. | − | 2.09372e6i | 1.46521e6 | 1.25383e7 | − | 1.47580e8i | − | 5.38101e8i | 1.95551e9 | + | 2.32365e9i | 1.17221e9 | − | 1.03945e10i | −1.54268e9 | + | 1.45685e9i | |||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 24.22.f.b | ✓ | 80 |
3.b | odd | 2 | 1 | inner | 24.22.f.b | ✓ | 80 |
8.d | odd | 2 | 1 | inner | 24.22.f.b | ✓ | 80 |
24.f | even | 2 | 1 | inner | 24.22.f.b | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
24.22.f.b | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
24.22.f.b | ✓ | 80 | 3.b | odd | 2 | 1 | inner |
24.22.f.b | ✓ | 80 | 8.d | odd | 2 | 1 | inner |
24.22.f.b | ✓ | 80 | 24.f | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{40} + \cdots + 15\!\cdots\!00 \)
acting on \(S_{22}^{\mathrm{new}}(24, [\chi])\).