Newspace parameters
Level: | \( N \) | \(=\) | \( 24 = 2^{3} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 24.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(67.0745626289\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-2}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 2 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).
\(n\) | \(7\) | \(13\) | \(17\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 |
|
− | 1448.15i | −35905.0 | + | 95766.3i | −2.09715e6 | 0 | 1.38684e8 | + | 5.19960e7i | 0 | 3.03700e9i | −7.88202e9 | − | 6.87698e9i | 0 | |||||||||||||||||
11.2 | 1448.15i | −35905.0 | − | 95766.3i | −2.09715e6 | 0 | 1.38684e8 | − | 5.19960e7i | 0 | − | 3.03700e9i | −7.88202e9 | + | 6.87698e9i | 0 | ||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-2}) \) |
3.b | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 24.22.f.a | ✓ | 2 |
3.b | odd | 2 | 1 | inner | 24.22.f.a | ✓ | 2 |
8.d | odd | 2 | 1 | CM | 24.22.f.a | ✓ | 2 |
24.f | even | 2 | 1 | inner | 24.22.f.a | ✓ | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
24.22.f.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
24.22.f.a | ✓ | 2 | 3.b | odd | 2 | 1 | inner |
24.22.f.a | ✓ | 2 | 8.d | odd | 2 | 1 | CM |
24.22.f.a | ✓ | 2 | 24.f | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} \)
acting on \(S_{22}^{\mathrm{new}}(24, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 2097152 \)
$3$
\( T^{2} + 71810 T + 10460353203 \)
$5$
\( T^{2} \)
$7$
\( T^{2} \)
$11$
\( T^{2} + 88\!\cdots\!00 \)
$13$
\( T^{2} \)
$17$
\( T^{2} + 76\!\cdots\!68 \)
$19$
\( (T + 52860065645374)^{2} \)
$23$
\( T^{2} \)
$29$
\( T^{2} \)
$31$
\( T^{2} \)
$37$
\( T^{2} \)
$41$
\( T^{2} + 13\!\cdots\!00 \)
$43$
\( (T - 16\!\cdots\!10)^{2} \)
$47$
\( T^{2} \)
$53$
\( T^{2} \)
$59$
\( T^{2} + 18\!\cdots\!00 \)
$61$
\( T^{2} \)
$67$
\( (T - 12\!\cdots\!30)^{2} \)
$71$
\( T^{2} \)
$73$
\( (T - 46\!\cdots\!30)^{2} \)
$79$
\( T^{2} \)
$83$
\( T^{2} + 13\!\cdots\!32 \)
$89$
\( T^{2} + 42\!\cdots\!00 \)
$97$
\( (T - 14\!\cdots\!10)^{2} \)
show more
show less