Properties

Label 24.22.f.a
Level $24$
Weight $22$
Character orbit 24.f
Analytic conductor $67.075$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [24,22,Mod(11,24)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(24, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("24.11");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 24.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.0745626289\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 1024 \beta q^{2} + (67717 \beta - 35905) q^{3} - 2097152 q^{4} + (36766720 \beta + 138684416) q^{6} + 2147483648 \beta q^{8} + ( - 4862757770 \beta - 7882015153) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - 1024 \beta q^{2} + (67717 \beta - 35905) q^{3} - 2097152 q^{4} + (36766720 \beta + 138684416) q^{6} + 2147483648 \beta q^{8} + ( - 4862757770 \beta - 7882015153) q^{9} - 21068191850 \beta q^{11} + ( - 142012841984 \beta + 75298242560) q^{12} + 4398046511104 q^{16} - 1958571155372 \beta q^{17} + (8071183516672 \beta - 9958927912960) q^{18} - 52860065645374 q^{19} - 43147656908800 q^{22} + ( - 77105400381440 \beta - 290842300383232) q^{24} - 476837158203125 q^{25} + ( - 359149102383851 \beta + 941586489890645) q^{27} - 45\!\cdots\!96 \beta q^{32} + \cdots + (16\!\cdots\!50 \beta - 20\!\cdots\!00) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 71810 q^{3} - 4194304 q^{4} + 277368832 q^{6} - 15764030306 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 71810 q^{3} - 4194304 q^{4} + 277368832 q^{6} - 15764030306 q^{9} + 150596485120 q^{12} + 8796093022208 q^{16} - 19917855825920 q^{18} - 105720131290748 q^{19} - 86295313817600 q^{22} - 581684600766464 q^{24} - 953674316406250 q^{25} + 18\!\cdots\!90 q^{27}+ \cdots - 40\!\cdots\!00 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
1.41421i
1.41421i
1448.15i −35905.0 + 95766.3i −2.09715e6 0 1.38684e8 + 5.19960e7i 0 3.03700e9i −7.88202e9 6.87698e9i 0
11.2 1448.15i −35905.0 95766.3i −2.09715e6 0 1.38684e8 5.19960e7i 0 3.03700e9i −7.88202e9 + 6.87698e9i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
3.b odd 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 24.22.f.a 2
3.b odd 2 1 inner 24.22.f.a 2
8.d odd 2 1 CM 24.22.f.a 2
24.f even 2 1 inner 24.22.f.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.22.f.a 2 1.a even 1 1 trivial
24.22.f.a 2 3.b odd 2 1 inner
24.22.f.a 2 8.d odd 2 1 CM
24.22.f.a 2 24.f even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{22}^{\mathrm{new}}(24, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2097152 \) Copy content Toggle raw display
$3$ \( T^{2} + 71810 T + 10460353203 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 88\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 76\!\cdots\!68 \) Copy content Toggle raw display
$19$ \( (T + 52860065645374)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 13\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T - 16\!\cdots\!10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 18\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( (T - 12\!\cdots\!30)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 46\!\cdots\!30)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 13\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{2} + 42\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T - 14\!\cdots\!10)^{2} \) Copy content Toggle raw display
show more
show less