[N,k,chi] = [24,22,Mod(1,24)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(24, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("24.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4032\sqrt{537541}\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(3\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} - 21948620T_{5} - 98034943473500 \)
T5^2 - 21948620*T5 - 98034943473500
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(24))\).
$p$
$F_p(T)$
$2$
\( T^{2} \)
T^2
$3$
\( (T - 59049)^{2} \)
(T - 59049)^2
$5$
\( T^{2} - 21948620 T - 98034943473500 \)
T^2 - 21948620*T - 98034943473500
$7$
\( T^{2} + 659451408 T - 36\!\cdots\!60 \)
T^2 + 659451408*T - 365702592867917760
$11$
\( T^{2} + 29910896872 T - 14\!\cdots\!48 \)
T^2 + 29910896872*T - 14499267143655965576048
$13$
\( T^{2} - 4468866812 T - 15\!\cdots\!28 \)
T^2 - 4468866812*T - 155773054890861799276028
$17$
\( T^{2} + 17665404721820 T + 51\!\cdots\!64 \)
T^2 + 17665404721820*T + 51437265644088988580660164
$19$
\( T^{2} + 22467979297496 T + 11\!\cdots\!88 \)
T^2 + 22467979297496*T + 111452502671495811977561488
$23$
\( T^{2} - 120995273049584 T - 18\!\cdots\!80 \)
T^2 - 120995273049584*T - 18275827061128993930179538880
$29$
\( T^{2} + \cdots + 24\!\cdots\!64 \)
T^2 + 3318133806711684*T + 2444455914357895726460500002564
$31$
\( T^{2} + \cdots - 70\!\cdots\!60 \)
T^2 + 6983846005801568*T - 7045853053368656478771822421760
$37$
\( T^{2} + \cdots - 40\!\cdots\!80 \)
T^2 + 23423034370792788*T - 400073922824481101580640527709980
$41$
\( T^{2} + \cdots + 13\!\cdots\!88 \)
T^2 - 152179406345334996*T + 1365296831126397996605868514364388
$43$
\( T^{2} + \cdots - 29\!\cdots\!44 \)
T^2 - 35137855888657880*T - 29315978906262715644232083091052144
$47$
\( T^{2} + \cdots - 91\!\cdots\!60 \)
T^2 + 84350534118008928*T - 91940541665032756094534185803298560
$53$
\( T^{2} + \cdots - 26\!\cdots\!20 \)
T^2 - 389728341256520684*T - 2613061404408564535890444235800606620
$59$
\( T^{2} + \cdots - 12\!\cdots\!72 \)
T^2 + 3799253986972943944*T - 12341389307519653011866013403688018672
$61$
\( T^{2} + \cdots - 43\!\cdots\!92 \)
T^2 - 1500415393700389916*T - 4343081302207761261334486243705816892
$67$
\( T^{2} + \cdots - 32\!\cdots\!52 \)
T^2 + 15727134260135911736*T - 32724310452630062198258012579023757552
$71$
\( T^{2} + \cdots - 16\!\cdots\!52 \)
T^2 + 15483319715102645936*T - 1642244663983292750482184032767817929152
$73$
\( T^{2} + \cdots + 86\!\cdots\!16 \)
T^2 + 75370240511639281708*T + 866357597465930438747701142865464082916
$79$
\( T^{2} + \cdots - 28\!\cdots\!76 \)
T^2 + 53554722400730974336*T - 280191222303509520836296459630246117376
$83$
\( T^{2} + \cdots + 21\!\cdots\!32 \)
T^2 + 299101821652772652632*T + 21781172081384463460637774791402614738832
$89$
\( T^{2} + \cdots + 66\!\cdots\!60 \)
T^2 + 614802488682208004364*T + 66897511990527117272682026749520141121060
$97$
\( T^{2} + \cdots + 26\!\cdots\!16 \)
T^2 + 1201555028804369106620*T + 260457210550025028616446009410280760989316
show more
show less