Properties

Label 24.2.d
Level 24
Weight 2
Character orbit d
Rep. character \(\chi_{24}(13,\cdot)\)
Character field \(\Q\)
Dimension 2
Newforms 1
Sturm bound 8
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 24.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 8 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(24, [\chi])\).

Total New Old
Modular forms 6 2 4
Cusp forms 2 2 0
Eisenstein series 4 0 4

Trace form

\( 2q - 2q^{2} - 2q^{6} - 4q^{7} + 4q^{8} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{2} - 2q^{6} - 4q^{7} + 4q^{8} - 2q^{9} + 4q^{10} + 4q^{12} + 4q^{14} + 4q^{15} - 8q^{16} - 4q^{17} + 2q^{18} - 8q^{20} + 8q^{23} - 4q^{24} + 2q^{25} - 8q^{26} - 4q^{30} + 4q^{31} + 8q^{32} + 4q^{34} + 8q^{38} - 8q^{39} + 8q^{40} + 4q^{41} + 4q^{42} - 8q^{46} - 24q^{47} - 6q^{49} - 2q^{50} + 16q^{52} + 2q^{54} - 8q^{56} + 8q^{57} - 12q^{58} - 4q^{62} + 4q^{63} + 16q^{65} - 8q^{70} + 24q^{71} - 4q^{72} - 12q^{73} + 16q^{74} - 16q^{76} + 8q^{78} + 20q^{79} + 2q^{81} - 4q^{82} - 8q^{84} - 8q^{86} - 12q^{87} - 20q^{89} - 4q^{90} + 24q^{94} - 16q^{95} + 8q^{96} - 4q^{97} + 6q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(24, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
24.2.d.a \(2\) \(0.192\) \(\Q(\sqrt{-1}) \) None \(-2\) \(0\) \(0\) \(-4\) \(q+(-1+i)q^{2}+iq^{3}-2iq^{4}-2iq^{5}+\cdots\)