Properties

Label 24.2.d
Level $24$
Weight $2$
Character orbit 24.d
Rep. character $\chi_{24}(13,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $8$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 24.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(24, [\chi])\).

Total New Old
Modular forms 6 2 4
Cusp forms 2 2 0
Eisenstein series 4 0 4

Trace form

\( 2 q - 2 q^{2} - 2 q^{6} - 4 q^{7} + 4 q^{8} - 2 q^{9} + 4 q^{10} + 4 q^{12} + 4 q^{14} + 4 q^{15} - 8 q^{16} - 4 q^{17} + 2 q^{18} - 8 q^{20} + 8 q^{23} - 4 q^{24} + 2 q^{25} - 8 q^{26} - 4 q^{30} + 4 q^{31}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(24, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
24.2.d.a 24.d 8.b $2$ $0.192$ \(\Q(\sqrt{-1}) \) None 24.2.d.a \(-2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-1)q^{2}+i q^{3}-2 i q^{4}-2 i q^{5}+\cdots\)