Properties

Label 24.14
Level 24
Weight 14
Dimension 83
Nonzero newspaces 3
Newform subspaces 7
Sturm bound 448
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 7 \)
Sturm bound: \(448\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(24))\).

Total New Old
Modular forms 220 87 133
Cusp forms 196 83 113
Eisenstein series 24 4 20

Trace form

\( 83 q + 2 q^{2} - 731 q^{3} + 17108 q^{4} - 59542 q^{5} - 42062 q^{6} - 441532 q^{7} - 1126012 q^{8} - 10097381 q^{9} + 11668420 q^{10} - 4960588 q^{11} - 731048 q^{12} - 5909102 q^{13} + 7518380 q^{14}+ \cdots + 29280243662372 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(24))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
24.14.a \(\chi_{24}(1, \cdot)\) 24.14.a.a 1 1
24.14.a.b 2
24.14.a.c 2
24.14.a.d 2
24.14.c \(\chi_{24}(23, \cdot)\) None 0 1
24.14.d \(\chi_{24}(13, \cdot)\) 24.14.d.a 26 1
24.14.f \(\chi_{24}(11, \cdot)\) 24.14.f.a 2 1
24.14.f.b 48

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(24))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_1(24)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)