Properties

Label 24.10.a
Level $24$
Weight $10$
Character orbit 24.a
Rep. character $\chi_{24}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $4$
Sturm bound $40$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 24.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(40\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(24))\).

Total New Old
Modular forms 40 5 35
Cusp forms 32 5 27
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(9\)\(1\)\(8\)\(7\)\(1\)\(6\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(10\)\(1\)\(9\)\(8\)\(1\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(11\)\(2\)\(9\)\(9\)\(2\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(10\)\(1\)\(9\)\(8\)\(1\)\(7\)\(2\)\(0\)\(2\)
Plus space\(+\)\(19\)\(2\)\(17\)\(15\)\(2\)\(13\)\(4\)\(0\)\(4\)
Minus space\(-\)\(21\)\(3\)\(18\)\(17\)\(3\)\(14\)\(4\)\(0\)\(4\)

Trace form

\( 5 q - 81 q^{3} - 122 q^{5} - 5904 q^{7} + 32805 q^{9} - 56924 q^{11} + 253814 q^{13} - 19278 q^{15} + 371690 q^{17} + 166300 q^{19} - 120528 q^{21} + 2393560 q^{23} + 265051 q^{25} - 531441 q^{27} - 736818 q^{29}+ \cdots - 373478364 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(24))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
24.10.a.a 24.a 1.a $1$ $12.361$ \(\Q\) None 24.10.a.a \(0\) \(-81\) \(830\) \(672\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{4}q^{3}+830q^{5}+672q^{7}+3^{8}q^{9}+\cdots\)
24.10.a.b 24.a 1.a $1$ $12.361$ \(\Q\) None 24.10.a.b \(0\) \(81\) \(-794\) \(-5880\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{4}q^{3}-794q^{5}-5880q^{7}+3^{8}q^{9}+\cdots\)
24.10.a.c 24.a 1.a $1$ $12.361$ \(\Q\) None 24.10.a.c \(0\) \(81\) \(614\) \(2184\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{4}q^{3}+614q^{5}+2184q^{7}+3^{8}q^{9}+\cdots\)
24.10.a.d 24.a 1.a $2$ $12.361$ \(\Q(\sqrt{109}) \) None 24.10.a.d \(0\) \(-162\) \(-772\) \(-2880\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{4}q^{3}+(-386-\beta )q^{5}+(-1440+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(24))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(24)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 2}\)