Properties

Label 2394.2.e.d
Level $2394$
Weight $2$
Character orbit 2394.e
Analytic conductor $19.116$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.1161862439\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 24 q^{4} - 8 q^{7} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24 q - 24 q^{4} - 8 q^{7} + 24 q^{16} + 24 q^{25} + 8 q^{28} + 32 q^{43} - 24 q^{49} + 16 q^{58} - 24 q^{64} - 64 q^{85} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1063.1 1.00000i 0 −1.00000 0.575772i 0 −2.19869 + 1.47165i 1.00000i 0 −0.575772
1063.2 1.00000i 0 −1.00000 0.575772i 0 −2.19869 + 1.47165i 1.00000i 0 0.575772
1063.3 1.00000i 0 −1.00000 0.575772i 0 −2.19869 1.47165i 1.00000i 0 −0.575772
1063.4 1.00000i 0 −1.00000 0.575772i 0 −2.19869 1.47165i 1.00000i 0 0.575772
1063.5 1.00000i 0 −1.00000 1.63913i 0 1.91223 + 1.82849i 1.00000i 0 −1.63913
1063.6 1.00000i 0 −1.00000 1.63913i 0 1.91223 + 1.82849i 1.00000i 0 1.63913
1063.7 1.00000i 0 −1.00000 1.63913i 0 1.91223 1.82849i 1.00000i 0 −1.63913
1063.8 1.00000i 0 −1.00000 1.63913i 0 1.91223 1.82849i 1.00000i 0 1.63913
1063.9 1.00000i 0 −1.00000 2.99695i 0 −0.713538 2.54772i 1.00000i 0 2.99695
1063.10 1.00000i 0 −1.00000 2.99695i 0 −0.713538 2.54772i 1.00000i 0 −2.99695
1063.11 1.00000i 0 −1.00000 2.99695i 0 −0.713538 + 2.54772i 1.00000i 0 2.99695
1063.12 1.00000i 0 −1.00000 2.99695i 0 −0.713538 + 2.54772i 1.00000i 0 −2.99695
1063.13 1.00000i 0 −1.00000 1.63913i 0 1.91223 1.82849i 1.00000i 0 1.63913
1063.14 1.00000i 0 −1.00000 1.63913i 0 1.91223 1.82849i 1.00000i 0 −1.63913
1063.15 1.00000i 0 −1.00000 1.63913i 0 1.91223 + 1.82849i 1.00000i 0 1.63913
1063.16 1.00000i 0 −1.00000 1.63913i 0 1.91223 + 1.82849i 1.00000i 0 −1.63913
1063.17 1.00000i 0 −1.00000 2.99695i 0 −0.713538 + 2.54772i 1.00000i 0 −2.99695
1063.18 1.00000i 0 −1.00000 2.99695i 0 −0.713538 + 2.54772i 1.00000i 0 2.99695
1063.19 1.00000i 0 −1.00000 2.99695i 0 −0.713538 2.54772i 1.00000i 0 −2.99695
1063.20 1.00000i 0 −1.00000 2.99695i 0 −0.713538 2.54772i 1.00000i 0 2.99695
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1063.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
19.b odd 2 1 inner
21.c even 2 1 inner
57.d even 2 1 inner
133.c even 2 1 inner
399.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2394.2.e.d 24
3.b odd 2 1 inner 2394.2.e.d 24
7.b odd 2 1 inner 2394.2.e.d 24
19.b odd 2 1 inner 2394.2.e.d 24
21.c even 2 1 inner 2394.2.e.d 24
57.d even 2 1 inner 2394.2.e.d 24
133.c even 2 1 inner 2394.2.e.d 24
399.h odd 2 1 inner 2394.2.e.d 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2394.2.e.d 24 1.a even 1 1 trivial
2394.2.e.d 24 3.b odd 2 1 inner
2394.2.e.d 24 7.b odd 2 1 inner
2394.2.e.d 24 19.b odd 2 1 inner
2394.2.e.d 24 21.c even 2 1 inner
2394.2.e.d 24 57.d even 2 1 inner
2394.2.e.d 24 133.c even 2 1 inner
2394.2.e.d 24 399.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2394, [\chi])\):

\( T_{5}^{6} + 12 T_{5}^{4} + 28 T_{5}^{2} + 8 \)
\( T_{13}^{6} - 44 T_{13}^{4} + 140 T_{13}^{2} - 72 \)