Newspace parameters
| Level: | \( N \) | \(=\) | \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2394.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(19.1161862439\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1063.1 | − | 1.00000i | 0 | −1.00000 | − | 0.575772i | 0 | −2.19869 | + | 1.47165i | 1.00000i | 0 | −0.575772 | ||||||||||||||
| 1063.2 | − | 1.00000i | 0 | −1.00000 | 0.575772i | 0 | −2.19869 | + | 1.47165i | 1.00000i | 0 | 0.575772 | |||||||||||||||
| 1063.3 | 1.00000i | 0 | −1.00000 | 0.575772i | 0 | −2.19869 | − | 1.47165i | − | 1.00000i | 0 | −0.575772 | |||||||||||||||
| 1063.4 | 1.00000i | 0 | −1.00000 | − | 0.575772i | 0 | −2.19869 | − | 1.47165i | − | 1.00000i | 0 | 0.575772 | ||||||||||||||
| 1063.5 | − | 1.00000i | 0 | −1.00000 | − | 1.63913i | 0 | 1.91223 | + | 1.82849i | 1.00000i | 0 | −1.63913 | ||||||||||||||
| 1063.6 | − | 1.00000i | 0 | −1.00000 | 1.63913i | 0 | 1.91223 | + | 1.82849i | 1.00000i | 0 | 1.63913 | |||||||||||||||
| 1063.7 | 1.00000i | 0 | −1.00000 | 1.63913i | 0 | 1.91223 | − | 1.82849i | − | 1.00000i | 0 | −1.63913 | |||||||||||||||
| 1063.8 | 1.00000i | 0 | −1.00000 | − | 1.63913i | 0 | 1.91223 | − | 1.82849i | − | 1.00000i | 0 | 1.63913 | ||||||||||||||
| 1063.9 | − | 1.00000i | 0 | −1.00000 | 2.99695i | 0 | −0.713538 | − | 2.54772i | 1.00000i | 0 | 2.99695 | |||||||||||||||
| 1063.10 | − | 1.00000i | 0 | −1.00000 | − | 2.99695i | 0 | −0.713538 | − | 2.54772i | 1.00000i | 0 | −2.99695 | ||||||||||||||
| 1063.11 | 1.00000i | 0 | −1.00000 | − | 2.99695i | 0 | −0.713538 | + | 2.54772i | − | 1.00000i | 0 | 2.99695 | ||||||||||||||
| 1063.12 | 1.00000i | 0 | −1.00000 | 2.99695i | 0 | −0.713538 | + | 2.54772i | − | 1.00000i | 0 | −2.99695 | |||||||||||||||
| 1063.13 | − | 1.00000i | 0 | −1.00000 | 1.63913i | 0 | 1.91223 | − | 1.82849i | 1.00000i | 0 | 1.63913 | |||||||||||||||
| 1063.14 | − | 1.00000i | 0 | −1.00000 | − | 1.63913i | 0 | 1.91223 | − | 1.82849i | 1.00000i | 0 | −1.63913 | ||||||||||||||
| 1063.15 | 1.00000i | 0 | −1.00000 | − | 1.63913i | 0 | 1.91223 | + | 1.82849i | − | 1.00000i | 0 | 1.63913 | ||||||||||||||
| 1063.16 | 1.00000i | 0 | −1.00000 | 1.63913i | 0 | 1.91223 | + | 1.82849i | − | 1.00000i | 0 | −1.63913 | |||||||||||||||
| 1063.17 | − | 1.00000i | 0 | −1.00000 | − | 2.99695i | 0 | −0.713538 | + | 2.54772i | 1.00000i | 0 | −2.99695 | ||||||||||||||
| 1063.18 | − | 1.00000i | 0 | −1.00000 | 2.99695i | 0 | −0.713538 | + | 2.54772i | 1.00000i | 0 | 2.99695 | |||||||||||||||
| 1063.19 | 1.00000i | 0 | −1.00000 | 2.99695i | 0 | −0.713538 | − | 2.54772i | − | 1.00000i | 0 | −2.99695 | |||||||||||||||
| 1063.20 | 1.00000i | 0 | −1.00000 | − | 2.99695i | 0 | −0.713538 | − | 2.54772i | − | 1.00000i | 0 | 2.99695 | ||||||||||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 7.b | odd | 2 | 1 | inner |
| 19.b | odd | 2 | 1 | inner |
| 21.c | even | 2 | 1 | inner |
| 57.d | even | 2 | 1 | inner |
| 133.c | even | 2 | 1 | inner |
| 399.h | odd | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 2394.2.e.d | ✓ | 24 |
| 3.b | odd | 2 | 1 | inner | 2394.2.e.d | ✓ | 24 |
| 7.b | odd | 2 | 1 | inner | 2394.2.e.d | ✓ | 24 |
| 19.b | odd | 2 | 1 | inner | 2394.2.e.d | ✓ | 24 |
| 21.c | even | 2 | 1 | inner | 2394.2.e.d | ✓ | 24 |
| 57.d | even | 2 | 1 | inner | 2394.2.e.d | ✓ | 24 |
| 133.c | even | 2 | 1 | inner | 2394.2.e.d | ✓ | 24 |
| 399.h | odd | 2 | 1 | inner | 2394.2.e.d | ✓ | 24 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 2394.2.e.d | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 2394.2.e.d | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
| 2394.2.e.d | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
| 2394.2.e.d | ✓ | 24 | 19.b | odd | 2 | 1 | inner |
| 2394.2.e.d | ✓ | 24 | 21.c | even | 2 | 1 | inner |
| 2394.2.e.d | ✓ | 24 | 57.d | even | 2 | 1 | inner |
| 2394.2.e.d | ✓ | 24 | 133.c | even | 2 | 1 | inner |
| 2394.2.e.d | ✓ | 24 | 399.h | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2394, [\chi])\):
|
\( T_{5}^{6} + 12T_{5}^{4} + 28T_{5}^{2} + 8 \)
|
|
\( T_{13}^{6} - 44T_{13}^{4} + 140T_{13}^{2} - 72 \)
|