Properties

Label 2394.2.a.s
Level $2394$
Weight $2$
Character orbit 2394.a
Self dual yes
Analytic conductor $19.116$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(19.1161862439\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Defining polynomial: \(x^{2} - x - 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + ( 1 + \beta ) q^{5} - q^{7} - q^{8} +O(q^{10})\) \( q - q^{2} + q^{4} + ( 1 + \beta ) q^{5} - q^{7} - q^{8} + ( -1 - \beta ) q^{10} + ( 3 - \beta ) q^{11} + ( -1 + \beta ) q^{13} + q^{14} + q^{16} + ( -1 - 3 \beta ) q^{17} + q^{19} + ( 1 + \beta ) q^{20} + ( -3 + \beta ) q^{22} + ( 3 + \beta ) q^{23} + ( 1 + 2 \beta ) q^{25} + ( 1 - \beta ) q^{26} - q^{28} + ( 4 + 2 \beta ) q^{29} -2 q^{31} - q^{32} + ( 1 + 3 \beta ) q^{34} + ( -1 - \beta ) q^{35} + ( -6 - 2 \beta ) q^{37} - q^{38} + ( -1 - \beta ) q^{40} + 6 q^{41} + 4 \beta q^{43} + ( 3 - \beta ) q^{44} + ( -3 - \beta ) q^{46} + 4 \beta q^{47} + q^{49} + ( -1 - 2 \beta ) q^{50} + ( -1 + \beta ) q^{52} + ( 8 + 2 \beta ) q^{53} + ( -2 + 2 \beta ) q^{55} + q^{56} + ( -4 - 2 \beta ) q^{58} + 8 q^{59} + ( 4 - 2 \beta ) q^{61} + 2 q^{62} + q^{64} + 4 q^{65} + ( 7 - 3 \beta ) q^{67} + ( -1 - 3 \beta ) q^{68} + ( 1 + \beta ) q^{70} + ( 6 + 2 \beta ) q^{71} + ( -8 - 2 \beta ) q^{73} + ( 6 + 2 \beta ) q^{74} + q^{76} + ( -3 + \beta ) q^{77} + ( 3 - \beta ) q^{79} + ( 1 + \beta ) q^{80} -6 q^{82} -10 q^{83} + ( -16 - 4 \beta ) q^{85} -4 \beta q^{86} + ( -3 + \beta ) q^{88} + 6 q^{89} + ( 1 - \beta ) q^{91} + ( 3 + \beta ) q^{92} -4 \beta q^{94} + ( 1 + \beta ) q^{95} + ( 7 - \beta ) q^{97} - q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 2 q^{7} - 2 q^{8} + O(q^{10}) \) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 2 q^{7} - 2 q^{8} - 2 q^{10} + 6 q^{11} - 2 q^{13} + 2 q^{14} + 2 q^{16} - 2 q^{17} + 2 q^{19} + 2 q^{20} - 6 q^{22} + 6 q^{23} + 2 q^{25} + 2 q^{26} - 2 q^{28} + 8 q^{29} - 4 q^{31} - 2 q^{32} + 2 q^{34} - 2 q^{35} - 12 q^{37} - 2 q^{38} - 2 q^{40} + 12 q^{41} + 6 q^{44} - 6 q^{46} + 2 q^{49} - 2 q^{50} - 2 q^{52} + 16 q^{53} - 4 q^{55} + 2 q^{56} - 8 q^{58} + 16 q^{59} + 8 q^{61} + 4 q^{62} + 2 q^{64} + 8 q^{65} + 14 q^{67} - 2 q^{68} + 2 q^{70} + 12 q^{71} - 16 q^{73} + 12 q^{74} + 2 q^{76} - 6 q^{77} + 6 q^{79} + 2 q^{80} - 12 q^{82} - 20 q^{83} - 32 q^{85} - 6 q^{88} + 12 q^{89} + 2 q^{91} + 6 q^{92} + 2 q^{95} + 14 q^{97} - 2 q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−1.00000 0 1.00000 −1.23607 0 −1.00000 −1.00000 0 1.23607
1.2 −1.00000 0 1.00000 3.23607 0 −1.00000 −1.00000 0 −3.23607
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2394.2.a.s 2
3.b odd 2 1 2394.2.a.v yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2394.2.a.s 2 1.a even 1 1 trivial
2394.2.a.v yes 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2394))\):

\( T_{5}^{2} - 2 T_{5} - 4 \)
\( T_{11}^{2} - 6 T_{11} + 4 \)
\( T_{13}^{2} + 2 T_{13} - 4 \)
\( T_{17}^{2} + 2 T_{17} - 44 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{2} \)
$3$ \( T^{2} \)
$5$ \( -4 - 2 T + T^{2} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( 4 - 6 T + T^{2} \)
$13$ \( -4 + 2 T + T^{2} \)
$17$ \( -44 + 2 T + T^{2} \)
$19$ \( ( -1 + T )^{2} \)
$23$ \( 4 - 6 T + T^{2} \)
$29$ \( -4 - 8 T + T^{2} \)
$31$ \( ( 2 + T )^{2} \)
$37$ \( 16 + 12 T + T^{2} \)
$41$ \( ( -6 + T )^{2} \)
$43$ \( -80 + T^{2} \)
$47$ \( -80 + T^{2} \)
$53$ \( 44 - 16 T + T^{2} \)
$59$ \( ( -8 + T )^{2} \)
$61$ \( -4 - 8 T + T^{2} \)
$67$ \( 4 - 14 T + T^{2} \)
$71$ \( 16 - 12 T + T^{2} \)
$73$ \( 44 + 16 T + T^{2} \)
$79$ \( 4 - 6 T + T^{2} \)
$83$ \( ( 10 + T )^{2} \)
$89$ \( ( -6 + T )^{2} \)
$97$ \( 44 - 14 T + T^{2} \)
show more
show less