Properties

Label 2394.2.a.h.1.1
Level $2394$
Weight $2$
Character 2394.1
Self dual yes
Analytic conductor $19.116$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(19.1161862439\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 798)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2394.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{7} +1.00000 q^{8} -2.00000 q^{10} +2.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} -1.00000 q^{19} -2.00000 q^{20} -8.00000 q^{23} -1.00000 q^{25} +2.00000 q^{26} -1.00000 q^{28} -2.00000 q^{29} +4.00000 q^{31} +1.00000 q^{32} -2.00000 q^{34} +2.00000 q^{35} +2.00000 q^{37} -1.00000 q^{38} -2.00000 q^{40} -6.00000 q^{41} -12.0000 q^{43} -8.00000 q^{46} +8.00000 q^{47} +1.00000 q^{49} -1.00000 q^{50} +2.00000 q^{52} -10.0000 q^{53} -1.00000 q^{56} -2.00000 q^{58} +4.00000 q^{59} -10.0000 q^{61} +4.00000 q^{62} +1.00000 q^{64} -4.00000 q^{65} +4.00000 q^{67} -2.00000 q^{68} +2.00000 q^{70} -8.00000 q^{71} +10.0000 q^{73} +2.00000 q^{74} -1.00000 q^{76} -4.00000 q^{79} -2.00000 q^{80} -6.00000 q^{82} +4.00000 q^{85} -12.0000 q^{86} -6.00000 q^{89} -2.00000 q^{91} -8.00000 q^{92} +8.00000 q^{94} +2.00000 q^{95} -6.00000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.00000 −0.632456
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −1.00000 −0.162221
\(39\) 0 0
\(40\) −2.00000 −0.316228
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 2.00000 0.239046
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) −12.0000 −1.29399
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) −8.00000 −0.834058
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 16.0000 1.49201
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −4.00000 −0.350823
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 0 0
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 0 0
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) −4.00000 −0.318223
\(159\) 0 0
\(160\) −2.00000 −0.158114
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 4.00000 0.306786
\(171\) 0 0
\(172\) −12.0000 −0.914991
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) −2.00000 −0.148250
\(183\) 0 0
\(184\) −8.00000 −0.589768
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 0 0
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 26.0000 1.87152 0.935760 0.352636i \(-0.114715\pi\)
0.935760 + 0.352636i \(0.114715\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 14.0000 0.997459 0.498729 0.866758i \(-0.333800\pi\)
0.498729 + 0.866758i \(0.333800\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −10.0000 −0.703598
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) −10.0000 −0.686803
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 24.0000 1.63679
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) −6.00000 −0.406371
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 16.0000 1.05501
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) 2.00000 0.129641
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) −11.0000 −0.707107
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) 12.0000 0.758947
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −20.0000 −1.25491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) 8.00000 0.494242
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 20.0000 1.22859
\(266\) 1.00000 0.0613139
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) 2.00000 0.119523
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 4.00000 0.234888
\(291\) 0 0
\(292\) 10.0000 0.585206
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) −16.0000 −0.925304
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 4.00000 0.230174
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 20.0000 1.14520
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −8.00000 −0.454369
\(311\) 16.0000 0.907277 0.453638 0.891186i \(-0.350126\pi\)
0.453638 + 0.891186i \(0.350126\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.00000 −0.111803
\(321\) 0 0
\(322\) 8.00000 0.445823
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 12.0000 0.664619
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 4.00000 0.216930
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) 0 0
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) 16.0000 0.849192
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 20.0000 1.05703
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −14.0000 −0.735824
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) −20.0000 −1.04685
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) −8.00000 −0.417029
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) 10.0000 0.519174
\(372\) 0 0
\(373\) 2.00000 0.103556 0.0517780 0.998659i \(-0.483511\pi\)
0.0517780 + 0.998659i \(0.483511\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 2.00000 0.102598
\(381\) 0 0
\(382\) 8.00000 0.409316
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 26.0000 1.32337
\(387\) 0 0
\(388\) −6.00000 −0.304604
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) 14.0000 0.705310
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) −16.0000 −0.802008
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) 2.00000 0.0992583
\(407\) 0 0
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 12.0000 0.592638
\(411\) 0 0
\(412\) −4.00000 −0.197066
\(413\) −4.00000 −0.196827
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) −20.0000 −0.973585
\(423\) 0 0
\(424\) −10.0000 −0.485643
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 10.0000 0.483934
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 24.0000 1.15738
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) −6.00000 −0.287348
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) −4.00000 −0.189405
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −6.00000 −0.282216
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) −2.00000 −0.0934539
\(459\) 0 0
\(460\) 16.0000 0.746004
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) 32.0000 1.48078 0.740392 0.672176i \(-0.234640\pi\)
0.740392 + 0.672176i \(0.234640\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) −16.0000 −0.738025
\(471\) 0 0
\(472\) 4.00000 0.184115
\(473\) 0 0
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 16.0000 0.731823
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 12.0000 0.544892
\(486\) 0 0
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) −2.00000 −0.0903508
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) −2.00000 −0.0899843
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) 8.00000 0.357057
\(503\) −40.0000 −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(504\) 0 0
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) 0 0
\(508\) −20.0000 −0.887357
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −6.00000 −0.264649
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) −2.00000 −0.0878750
\(519\) 0 0
\(520\) −4.00000 −0.175412
\(521\) −38.0000 −1.66481 −0.832405 0.554168i \(-0.813037\pi\)
−0.832405 + 0.554168i \(0.813037\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 8.00000 0.349482
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) −8.00000 −0.348485
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 20.0000 0.868744
\(531\) 0 0
\(532\) 1.00000 0.0433555
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 24.0000 1.03761
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) 0 0
\(540\) 0 0
\(541\) −26.0000 −1.11783 −0.558914 0.829226i \(-0.688782\pi\)
−0.558914 + 0.829226i \(0.688782\pi\)
\(542\) 8.00000 0.343629
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) 0 0
\(551\) 2.00000 0.0852029
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) −10.0000 −0.424859
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 26.0000 1.09674
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) 20.0000 0.840663
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 6.00000 0.250435
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) −14.0000 −0.582828 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(578\) −13.0000 −0.540729
\(579\) 0 0
\(580\) 4.00000 0.166091
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) −8.00000 −0.329355
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) −4.00000 −0.163984
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) −16.0000 −0.654289
\(599\) 40.0000 1.63436 0.817178 0.576386i \(-0.195537\pi\)
0.817178 + 0.576386i \(0.195537\pi\)
\(600\) 0 0
\(601\) −14.0000 −0.571072 −0.285536 0.958368i \(-0.592172\pi\)
−0.285536 + 0.958368i \(0.592172\pi\)
\(602\) 12.0000 0.489083
\(603\) 0 0
\(604\) 4.00000 0.162758
\(605\) 22.0000 0.894427
\(606\) 0 0
\(607\) 12.0000 0.487065 0.243532 0.969893i \(-0.421694\pi\)
0.243532 + 0.969893i \(0.421694\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 28.0000 1.12999
\(615\) 0 0
\(616\) 0 0
\(617\) −34.0000 −1.36879 −0.684394 0.729112i \(-0.739933\pi\)
−0.684394 + 0.729112i \(0.739933\pi\)
\(618\) 0 0
\(619\) 36.0000 1.44696 0.723481 0.690344i \(-0.242541\pi\)
0.723481 + 0.690344i \(0.242541\pi\)
\(620\) −8.00000 −0.321288
\(621\) 0 0
\(622\) 16.0000 0.641542
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −48.0000 −1.91085 −0.955425 0.295234i \(-0.904602\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) −4.00000 −0.159111
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) 40.0000 1.58735
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) 0 0
\(640\) −2.00000 −0.0790569
\(641\) −38.0000 −1.50091 −0.750455 0.660922i \(-0.770166\pi\)
−0.750455 + 0.660922i \(0.770166\pi\)
\(642\) 0 0
\(643\) 12.0000 0.473234 0.236617 0.971603i \(-0.423961\pi\)
0.236617 + 0.971603i \(0.423961\pi\)
\(644\) 8.00000 0.315244
\(645\) 0 0
\(646\) 2.00000 0.0786889
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 0 0
\(655\) −16.0000 −0.625172
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −8.00000 −0.311872
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −30.0000 −1.16686 −0.583432 0.812162i \(-0.698291\pi\)
−0.583432 + 0.812162i \(0.698291\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) 0 0
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) 16.0000 0.619522
\(668\) 16.0000 0.619059
\(669\) 0 0
\(670\) −8.00000 −0.309067
\(671\) 0 0
\(672\) 0 0
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) −6.00000 −0.231111
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) 6.00000 0.230259
\(680\) 4.00000 0.153393
\(681\) 0 0
\(682\) 0 0
\(683\) 28.0000 1.07139 0.535695 0.844411i \(-0.320050\pi\)
0.535695 + 0.844411i \(0.320050\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) −12.0000 −0.457496
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 0 0
\(695\) 8.00000 0.303457
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) −18.0000 −0.681310
\(699\) 0 0
\(700\) 1.00000 0.0377964
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) −2.00000 −0.0754314
\(704\) 0 0
\(705\) 0 0
\(706\) −10.0000 −0.376355
\(707\) 10.0000 0.376089
\(708\) 0 0
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 16.0000 0.600469
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) 0 0
\(718\) 16.0000 0.597115
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) −14.0000 −0.520306
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) 40.0000 1.48352 0.741759 0.670667i \(-0.233992\pi\)
0.741759 + 0.670667i \(0.233992\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 0 0
\(730\) −20.0000 −0.740233
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) 30.0000 1.10808 0.554038 0.832492i \(-0.313086\pi\)
0.554038 + 0.832492i \(0.313086\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) 0 0
\(738\) 0 0
\(739\) 28.0000 1.03000 0.514998 0.857191i \(-0.327793\pi\)
0.514998 + 0.857191i \(0.327793\pi\)
\(740\) −4.00000 −0.147043
\(741\) 0 0
\(742\) 10.0000 0.367112
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 2.00000 0.0732252
\(747\) 0 0
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 8.00000 0.291730
\(753\) 0 0
\(754\) −4.00000 −0.145671
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 20.0000 0.726433
\(759\) 0 0
\(760\) 2.00000 0.0725476
\(761\) 38.0000 1.37750 0.688749 0.724999i \(-0.258160\pi\)
0.688749 + 0.724999i \(0.258160\pi\)
\(762\) 0 0
\(763\) 6.00000 0.217215
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 26.0000 0.935760
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) −10.0000 −0.358517
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) 16.0000 0.572159
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −28.0000 −0.999363
\(786\) 0 0
\(787\) 44.0000 1.56843 0.784215 0.620489i \(-0.213066\pi\)
0.784215 + 0.620489i \(0.213066\pi\)
\(788\) 14.0000 0.498729
\(789\) 0 0
\(790\) 8.00000 0.284627
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) −6.00000 −0.211867
\(803\) 0 0
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) −10.0000 −0.351799
\(809\) 14.0000 0.492214 0.246107 0.969243i \(-0.420849\pi\)
0.246107 + 0.969243i \(0.420849\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 2.00000 0.0701862
\(813\) 0 0
\(814\) 0 0
\(815\) −24.0000 −0.840683
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 18.0000 0.629355
\(819\) 0 0
\(820\) 12.0000 0.419058
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 0 0
\(823\) 48.0000 1.67317 0.836587 0.547833i \(-0.184547\pi\)
0.836587 + 0.547833i \(0.184547\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) −4.00000 −0.139178
\(827\) −20.0000 −0.695468 −0.347734 0.937593i \(-0.613049\pi\)
−0.347734 + 0.937593i \(0.613049\pi\)
\(828\) 0 0
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) −32.0000 −1.10741
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 10.0000 0.344623
\(843\) 0 0
\(844\) −20.0000 −0.688428
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) 11.0000 0.377964
\(848\) −10.0000 −0.343401
\(849\) 0 0
\(850\) 2.00000 0.0685994
\(851\) −16.0000 −0.548473
\(852\) 0 0
\(853\) −50.0000 −1.71197 −0.855984 0.517003i \(-0.827048\pi\)
−0.855984 + 0.517003i \(0.827048\pi\)
\(854\) 10.0000 0.342193
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 24.0000 0.818393
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) −28.0000 −0.952029
\(866\) 18.0000 0.611665
\(867\) 0 0
\(868\) −4.00000 −0.135769
\(869\) 0 0
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) −6.00000 −0.203186
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) −6.00000 −0.202606 −0.101303 0.994856i \(-0.532301\pi\)
−0.101303 + 0.994856i \(0.532301\pi\)
\(878\) 20.0000 0.674967
\(879\) 0 0
\(880\) 0 0
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 0 0
\(887\) −48.0000 −1.61168 −0.805841 0.592132i \(-0.798286\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(888\) 0 0
\(889\) 20.0000 0.670778
\(890\) 12.0000 0.402241
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) −8.00000 −0.267710
\(894\) 0 0
\(895\) −40.0000 −1.33705
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −30.0000 −1.00111
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) 20.0000 0.666297
\(902\) 0 0
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 28.0000 0.930751
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) −4.00000 −0.132745
\(909\) 0 0
\(910\) 4.00000 0.132599
\(911\) −16.0000 −0.530104 −0.265052 0.964234i \(-0.585389\pi\)
−0.265052 + 0.964234i \(0.585389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) −2.00000 −0.0660819
\(917\) −8.00000 −0.264183
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 16.0000 0.527504
\(921\) 0 0
\(922\) −42.0000 −1.38320
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) −24.0000 −0.788689
\(927\) 0 0
\(928\) −2.00000 −0.0656532
\(929\) −26.0000 −0.853032 −0.426516 0.904480i \(-0.640259\pi\)
−0.426516 + 0.904480i \(0.640259\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) 32.0000 1.04707
\(935\) 0 0
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) −4.00000 −0.130605
\(939\) 0 0
\(940\) −16.0000 −0.521862
\(941\) 46.0000 1.49956 0.749779 0.661689i \(-0.230160\pi\)
0.749779 + 0.661689i \(0.230160\pi\)
\(942\) 0 0
\(943\) 48.0000 1.56310
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 0 0
\(947\) −48.0000 −1.55979 −0.779895 0.625910i \(-0.784728\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(948\) 0 0
\(949\) 20.0000 0.649227
\(950\) 1.00000 0.0324443
\(951\) 0 0
\(952\) 2.00000 0.0648204
\(953\) −38.0000 −1.23094 −0.615470 0.788160i \(-0.711034\pi\)
−0.615470 + 0.788160i \(0.711034\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) −40.0000 −1.29234
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 4.00000 0.128965
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) −52.0000 −1.67394
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) −11.0000 −0.353553
\(969\) 0 0
\(970\) 12.0000 0.385297
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) −4.00000 −0.128168
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) −54.0000 −1.72761 −0.863807 0.503824i \(-0.831926\pi\)
−0.863807 + 0.503824i \(0.831926\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −2.00000 −0.0638877
\(981\) 0 0
\(982\) 24.0000 0.765871
\(983\) −40.0000 −1.27580 −0.637901 0.770118i \(-0.720197\pi\)
−0.637901 + 0.770118i \(0.720197\pi\)
\(984\) 0 0
\(985\) −28.0000 −0.892154
\(986\) 4.00000 0.127386
\(987\) 0 0
\(988\) −2.00000 −0.0636285
\(989\) 96.0000 3.05262
\(990\) 0 0
\(991\) 60.0000 1.90596 0.952981 0.303029i \(-0.0979978\pi\)
0.952981 + 0.303029i \(0.0979978\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 8.00000 0.253745
\(995\) 32.0000 1.01447
\(996\) 0 0
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) 36.0000 1.13956
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2394.2.a.h.1.1 1
3.2 odd 2 798.2.a.e.1.1 1
12.11 even 2 6384.2.a.n.1.1 1
21.20 even 2 5586.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
798.2.a.e.1.1 1 3.2 odd 2
2394.2.a.h.1.1 1 1.1 even 1 trivial
5586.2.a.b.1.1 1 21.20 even 2
6384.2.a.n.1.1 1 12.11 even 2