Properties

Label 238.4.a.a
Level $238$
Weight $4$
Character orbit 238.a
Self dual yes
Analytic conductor $14.042$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [238,4,Mod(1,238)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("238.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(238, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 238 = 2 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 238.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.0424545814\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{93}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 23 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{93})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - \beta - 2) q^{3} + 4 q^{4} + ( - \beta + 5) q^{5} + (2 \beta + 4) q^{6} - 7 q^{7} - 8 q^{8} + 5 \beta q^{9} + (2 \beta - 10) q^{10} + (8 \beta - 6) q^{11} + ( - 4 \beta - 8) q^{12} + (8 \beta - 18) q^{13}+ \cdots + (10 \beta + 920) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 5 q^{3} + 8 q^{4} + 9 q^{5} + 10 q^{6} - 14 q^{7} - 16 q^{8} + 5 q^{9} - 18 q^{10} - 4 q^{11} - 20 q^{12} - 28 q^{13} + 28 q^{14} + 24 q^{15} + 32 q^{16} + 34 q^{17} - 10 q^{18} + 12 q^{19}+ \cdots + 1850 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.32183
−4.32183
−2.00000 −7.32183 4.00000 −0.321825 14.6437 −7.00000 −8.00000 26.6091 0.643651
1.2 −2.00000 2.32183 4.00000 9.32183 −4.64365 −7.00000 −8.00000 −21.6091 −18.6437
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 238.4.a.a 2
3.b odd 2 1 2142.4.a.l 2
4.b odd 2 1 1904.4.a.b 2
7.b odd 2 1 1666.4.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
238.4.a.a 2 1.a even 1 1 trivial
1666.4.a.c 2 7.b odd 2 1
1904.4.a.b 2 4.b odd 2 1
2142.4.a.l 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 5T_{3} - 17 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(238))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 5T - 17 \) Copy content Toggle raw display
$5$ \( T^{2} - 9T - 3 \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 1484 \) Copy content Toggle raw display
$13$ \( T^{2} + 28T - 1292 \) Copy content Toggle raw display
$17$ \( (T - 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 12T - 336 \) Copy content Toggle raw display
$23$ \( T^{2} - 50T + 532 \) Copy content Toggle raw display
$29$ \( T^{2} + 208T - 7412 \) Copy content Toggle raw display
$31$ \( T^{2} - 189T - 8019 \) Copy content Toggle raw display
$37$ \( T^{2} + 320T + 1792 \) Copy content Toggle raw display
$41$ \( T^{2} + 457T + 51073 \) Copy content Toggle raw display
$43$ \( T^{2} + 69T - 109503 \) Copy content Toggle raw display
$47$ \( T^{2} + 774T + 148932 \) Copy content Toggle raw display
$53$ \( T^{2} + 731T + 128359 \) Copy content Toggle raw display
$59$ \( (T - 148)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 339T - 81963 \) Copy content Toggle raw display
$67$ \( T^{2} - 467T - 1301 \) Copy content Toggle raw display
$71$ \( T^{2} - 216T + 5712 \) Copy content Toggle raw display
$73$ \( T^{2} - 821T + 158257 \) Copy content Toggle raw display
$79$ \( T^{2} - 30T - 141228 \) Copy content Toggle raw display
$83$ \( T^{2} + 358T - 548372 \) Copy content Toggle raw display
$89$ \( T^{2} + 918T + 177108 \) Copy content Toggle raw display
$97$ \( T^{2} + 915T - 66927 \) Copy content Toggle raw display
show more
show less