Properties

Label 238.2.a
Level $238$
Weight $2$
Character orbit 238.a
Rep. character $\chi_{238}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $6$
Sturm bound $72$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 238 = 2 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 238.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(72\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(238))\).

Total New Old
Modular forms 40 7 33
Cusp forms 33 7 26
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(5\)

Trace form

\( 7 q - q^{2} + 4 q^{3} + 7 q^{4} + 2 q^{5} - 4 q^{6} - q^{7} - q^{8} + 3 q^{9} - 6 q^{10} - 8 q^{11} + 4 q^{12} - 6 q^{13} + 3 q^{14} + 8 q^{15} + 7 q^{16} - q^{17} - 5 q^{18} - 12 q^{19} + 2 q^{20}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(238))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 17
238.2.a.a 238.a 1.a $1$ $1.900$ \(\Q\) None 238.2.a.a \(-1\) \(0\) \(-2\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}-q^{7}-q^{8}-3q^{9}+\cdots\)
238.2.a.b 238.a 1.a $1$ $1.900$ \(\Q\) None 238.2.a.b \(-1\) \(2\) \(4\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}+4q^{5}-2q^{6}+q^{7}+\cdots\)
238.2.a.c 238.a 1.a $1$ $1.900$ \(\Q\) None 238.2.a.c \(1\) \(-2\) \(-4\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}-4q^{5}-2q^{6}+q^{7}+\cdots\)
238.2.a.d 238.a 1.a $1$ $1.900$ \(\Q\) None 238.2.a.d \(1\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}+q^{7}+q^{8}-3q^{9}+\cdots\)
238.2.a.e 238.a 1.a $1$ $1.900$ \(\Q\) None 238.2.a.e \(1\) \(2\) \(0\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+2q^{6}-q^{7}+q^{8}+\cdots\)
238.2.a.f 238.a 1.a $2$ $1.900$ \(\Q(\sqrt{5}) \) None 238.2.a.f \(-2\) \(2\) \(2\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}+(1-\beta )q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(238))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(238)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 2}\)