Properties

Label 2368.2.a.bb.1.3
Level $2368$
Weight $2$
Character 2368.1
Self dual yes
Analytic conductor $18.909$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2368,2,Mod(1,2368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2368 = 2^{6} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9085751986\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 296)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.254102\) of defining polynomial
Character \(\chi\) \(=\) 2368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.93543 q^{3} +2.93543 q^{5} +4.68133 q^{7} +0.745898 q^{9} -0.762305 q^{11} -1.76231 q^{13} +5.68133 q^{15} +3.36266 q^{17} -7.36266 q^{19} +9.06040 q^{21} +3.25410 q^{23} +3.61676 q^{25} -4.36266 q^{27} +3.25410 q^{29} +3.06457 q^{31} -1.47539 q^{33} +13.7417 q^{35} +1.00000 q^{37} -3.41082 q^{39} -7.42723 q^{41} +12.2499 q^{43} +2.18953 q^{45} +0.302263 q^{47} +14.9149 q^{49} +6.50820 q^{51} -5.53579 q^{53} -2.23769 q^{55} -14.2499 q^{57} -10.2499 q^{59} -12.2981 q^{61} +3.49180 q^{63} -5.17313 q^{65} +13.1526 q^{67} +6.29809 q^{69} +0.173127 q^{71} -1.23769 q^{73} +7.00000 q^{75} -3.56860 q^{77} +4.61676 q^{79} -10.6813 q^{81} -3.53579 q^{83} +9.87086 q^{85} +6.29809 q^{87} +15.7417 q^{89} -8.24993 q^{91} +5.93126 q^{93} -21.6126 q^{95} -16.1208 q^{97} -0.568602 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} + q^{5} + 7 q^{7} + 3 q^{9} - 3 q^{13} + 10 q^{15} - 4 q^{17} - 8 q^{19} + 3 q^{21} + 9 q^{23} - 4 q^{25} + q^{27} + 9 q^{29} + 17 q^{31} - 9 q^{33} + 10 q^{35} + 3 q^{37} - 7 q^{39} - 16 q^{41}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.93543 1.11742 0.558711 0.829362i \(-0.311296\pi\)
0.558711 + 0.829362i \(0.311296\pi\)
\(4\) 0 0
\(5\) 2.93543 1.31277 0.656383 0.754428i \(-0.272086\pi\)
0.656383 + 0.754428i \(0.272086\pi\)
\(6\) 0 0
\(7\) 4.68133 1.76938 0.884688 0.466183i \(-0.154371\pi\)
0.884688 + 0.466183i \(0.154371\pi\)
\(8\) 0 0
\(9\) 0.745898 0.248633
\(10\) 0 0
\(11\) −0.762305 −0.229844 −0.114922 0.993375i \(-0.536662\pi\)
−0.114922 + 0.993375i \(0.536662\pi\)
\(12\) 0 0
\(13\) −1.76231 −0.488775 −0.244388 0.969678i \(-0.578587\pi\)
−0.244388 + 0.969678i \(0.578587\pi\)
\(14\) 0 0
\(15\) 5.68133 1.46691
\(16\) 0 0
\(17\) 3.36266 0.815565 0.407783 0.913079i \(-0.366302\pi\)
0.407783 + 0.913079i \(0.366302\pi\)
\(18\) 0 0
\(19\) −7.36266 −1.68911 −0.844555 0.535469i \(-0.820135\pi\)
−0.844555 + 0.535469i \(0.820135\pi\)
\(20\) 0 0
\(21\) 9.06040 1.97714
\(22\) 0 0
\(23\) 3.25410 0.678527 0.339264 0.940691i \(-0.389822\pi\)
0.339264 + 0.940691i \(0.389822\pi\)
\(24\) 0 0
\(25\) 3.61676 0.723353
\(26\) 0 0
\(27\) −4.36266 −0.839595
\(28\) 0 0
\(29\) 3.25410 0.604272 0.302136 0.953265i \(-0.402300\pi\)
0.302136 + 0.953265i \(0.402300\pi\)
\(30\) 0 0
\(31\) 3.06457 0.550413 0.275206 0.961385i \(-0.411254\pi\)
0.275206 + 0.961385i \(0.411254\pi\)
\(32\) 0 0
\(33\) −1.47539 −0.256832
\(34\) 0 0
\(35\) 13.7417 2.32278
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) −3.41082 −0.546169
\(40\) 0 0
\(41\) −7.42723 −1.15994 −0.579969 0.814638i \(-0.696935\pi\)
−0.579969 + 0.814638i \(0.696935\pi\)
\(42\) 0 0
\(43\) 12.2499 1.86810 0.934049 0.357146i \(-0.116250\pi\)
0.934049 + 0.357146i \(0.116250\pi\)
\(44\) 0 0
\(45\) 2.18953 0.326396
\(46\) 0 0
\(47\) 0.302263 0.0440895 0.0220448 0.999757i \(-0.492982\pi\)
0.0220448 + 0.999757i \(0.492982\pi\)
\(48\) 0 0
\(49\) 14.9149 2.13069
\(50\) 0 0
\(51\) 6.50820 0.911331
\(52\) 0 0
\(53\) −5.53579 −0.760399 −0.380200 0.924904i \(-0.624145\pi\)
−0.380200 + 0.924904i \(0.624145\pi\)
\(54\) 0 0
\(55\) −2.23769 −0.301731
\(56\) 0 0
\(57\) −14.2499 −1.88745
\(58\) 0 0
\(59\) −10.2499 −1.33443 −0.667214 0.744866i \(-0.732513\pi\)
−0.667214 + 0.744866i \(0.732513\pi\)
\(60\) 0 0
\(61\) −12.2981 −1.57461 −0.787305 0.616564i \(-0.788524\pi\)
−0.787305 + 0.616564i \(0.788524\pi\)
\(62\) 0 0
\(63\) 3.49180 0.439925
\(64\) 0 0
\(65\) −5.17313 −0.641647
\(66\) 0 0
\(67\) 13.1526 1.60684 0.803420 0.595413i \(-0.203011\pi\)
0.803420 + 0.595413i \(0.203011\pi\)
\(68\) 0 0
\(69\) 6.29809 0.758201
\(70\) 0 0
\(71\) 0.173127 0.0205464 0.0102732 0.999947i \(-0.496730\pi\)
0.0102732 + 0.999947i \(0.496730\pi\)
\(72\) 0 0
\(73\) −1.23769 −0.144861 −0.0724306 0.997373i \(-0.523076\pi\)
−0.0724306 + 0.997373i \(0.523076\pi\)
\(74\) 0 0
\(75\) 7.00000 0.808290
\(76\) 0 0
\(77\) −3.56860 −0.406680
\(78\) 0 0
\(79\) 4.61676 0.519426 0.259713 0.965686i \(-0.416372\pi\)
0.259713 + 0.965686i \(0.416372\pi\)
\(80\) 0 0
\(81\) −10.6813 −1.18681
\(82\) 0 0
\(83\) −3.53579 −0.388103 −0.194052 0.980991i \(-0.562163\pi\)
−0.194052 + 0.980991i \(0.562163\pi\)
\(84\) 0 0
\(85\) 9.87086 1.07065
\(86\) 0 0
\(87\) 6.29809 0.675227
\(88\) 0 0
\(89\) 15.7417 1.66862 0.834310 0.551296i \(-0.185866\pi\)
0.834310 + 0.551296i \(0.185866\pi\)
\(90\) 0 0
\(91\) −8.24993 −0.864828
\(92\) 0 0
\(93\) 5.93126 0.615043
\(94\) 0 0
\(95\) −21.6126 −2.21741
\(96\) 0 0
\(97\) −16.1208 −1.63682 −0.818409 0.574635i \(-0.805144\pi\)
−0.818409 + 0.574635i \(0.805144\pi\)
\(98\) 0 0
\(99\) −0.568602 −0.0571467
\(100\) 0 0
\(101\) 9.53579 0.948846 0.474423 0.880297i \(-0.342657\pi\)
0.474423 + 0.880297i \(0.342657\pi\)
\(102\) 0 0
\(103\) −3.31450 −0.326587 −0.163294 0.986577i \(-0.552212\pi\)
−0.163294 + 0.986577i \(0.552212\pi\)
\(104\) 0 0
\(105\) 26.5962 2.59552
\(106\) 0 0
\(107\) −17.2130 −1.66404 −0.832019 0.554747i \(-0.812815\pi\)
−0.832019 + 0.554747i \(0.812815\pi\)
\(108\) 0 0
\(109\) −20.3791 −1.95196 −0.975980 0.217859i \(-0.930093\pi\)
−0.975980 + 0.217859i \(0.930093\pi\)
\(110\) 0 0
\(111\) 1.93543 0.183703
\(112\) 0 0
\(113\) −14.7581 −1.38833 −0.694164 0.719817i \(-0.744226\pi\)
−0.694164 + 0.719817i \(0.744226\pi\)
\(114\) 0 0
\(115\) 9.55220 0.890747
\(116\) 0 0
\(117\) −1.31450 −0.121526
\(118\) 0 0
\(119\) 15.7417 1.44304
\(120\) 0 0
\(121\) −10.4189 −0.947172
\(122\) 0 0
\(123\) −14.3749 −1.29614
\(124\) 0 0
\(125\) −4.06040 −0.363173
\(126\) 0 0
\(127\) 7.22235 0.640880 0.320440 0.947269i \(-0.396169\pi\)
0.320440 + 0.947269i \(0.396169\pi\)
\(128\) 0 0
\(129\) 23.7089 2.08745
\(130\) 0 0
\(131\) 0.475390 0.0415350 0.0207675 0.999784i \(-0.493389\pi\)
0.0207675 + 0.999784i \(0.493389\pi\)
\(132\) 0 0
\(133\) −34.4671 −2.98867
\(134\) 0 0
\(135\) −12.8063 −1.10219
\(136\) 0 0
\(137\) −11.1526 −0.952827 −0.476413 0.879221i \(-0.658063\pi\)
−0.476413 + 0.879221i \(0.658063\pi\)
\(138\) 0 0
\(139\) 15.5040 1.31504 0.657518 0.753439i \(-0.271607\pi\)
0.657518 + 0.753439i \(0.271607\pi\)
\(140\) 0 0
\(141\) 0.585009 0.0492666
\(142\) 0 0
\(143\) 1.34341 0.112342
\(144\) 0 0
\(145\) 9.55220 0.793267
\(146\) 0 0
\(147\) 28.8667 2.38088
\(148\) 0 0
\(149\) 4.68133 0.383510 0.191755 0.981443i \(-0.438582\pi\)
0.191755 + 0.981443i \(0.438582\pi\)
\(150\) 0 0
\(151\) 7.83805 0.637852 0.318926 0.947780i \(-0.396678\pi\)
0.318926 + 0.947780i \(0.396678\pi\)
\(152\) 0 0
\(153\) 2.50820 0.202776
\(154\) 0 0
\(155\) 8.99583 0.722563
\(156\) 0 0
\(157\) 5.53579 0.441804 0.220902 0.975296i \(-0.429100\pi\)
0.220902 + 0.975296i \(0.429100\pi\)
\(158\) 0 0
\(159\) −10.7141 −0.849687
\(160\) 0 0
\(161\) 15.2335 1.20057
\(162\) 0 0
\(163\) 1.74173 0.136423 0.0682114 0.997671i \(-0.478271\pi\)
0.0682114 + 0.997671i \(0.478271\pi\)
\(164\) 0 0
\(165\) −4.33091 −0.337161
\(166\) 0 0
\(167\) 23.5644 1.82347 0.911735 0.410778i \(-0.134743\pi\)
0.911735 + 0.410778i \(0.134743\pi\)
\(168\) 0 0
\(169\) −9.89428 −0.761099
\(170\) 0 0
\(171\) −5.49180 −0.419968
\(172\) 0 0
\(173\) 9.18953 0.698667 0.349334 0.936998i \(-0.386408\pi\)
0.349334 + 0.936998i \(0.386408\pi\)
\(174\) 0 0
\(175\) 16.9313 1.27988
\(176\) 0 0
\(177\) −19.8381 −1.49112
\(178\) 0 0
\(179\) 15.9917 1.19527 0.597636 0.801767i \(-0.296107\pi\)
0.597636 + 0.801767i \(0.296107\pi\)
\(180\) 0 0
\(181\) −5.15672 −0.383296 −0.191648 0.981464i \(-0.561383\pi\)
−0.191648 + 0.981464i \(0.561383\pi\)
\(182\) 0 0
\(183\) −23.8021 −1.75950
\(184\) 0 0
\(185\) 2.93543 0.215817
\(186\) 0 0
\(187\) −2.56337 −0.187452
\(188\) 0 0
\(189\) −20.4231 −1.48556
\(190\) 0 0
\(191\) −10.6443 −0.770198 −0.385099 0.922875i \(-0.625833\pi\)
−0.385099 + 0.922875i \(0.625833\pi\)
\(192\) 0 0
\(193\) 0.346255 0.0249239 0.0124620 0.999922i \(-0.496033\pi\)
0.0124620 + 0.999922i \(0.496033\pi\)
\(194\) 0 0
\(195\) −10.0122 −0.716991
\(196\) 0 0
\(197\) 17.5358 1.24937 0.624687 0.780876i \(-0.285227\pi\)
0.624687 + 0.780876i \(0.285227\pi\)
\(198\) 0 0
\(199\) 6.37907 0.452200 0.226100 0.974104i \(-0.427402\pi\)
0.226100 + 0.974104i \(0.427402\pi\)
\(200\) 0 0
\(201\) 25.4559 1.79552
\(202\) 0 0
\(203\) 15.2335 1.06918
\(204\) 0 0
\(205\) −21.8021 −1.52273
\(206\) 0 0
\(207\) 2.42723 0.168704
\(208\) 0 0
\(209\) 5.61259 0.388231
\(210\) 0 0
\(211\) −21.6168 −1.48816 −0.744080 0.668091i \(-0.767112\pi\)
−0.744080 + 0.668091i \(0.767112\pi\)
\(212\) 0 0
\(213\) 0.335076 0.0229590
\(214\) 0 0
\(215\) 35.9588 2.45237
\(216\) 0 0
\(217\) 14.3463 0.973887
\(218\) 0 0
\(219\) −2.39547 −0.161871
\(220\) 0 0
\(221\) −5.92604 −0.398628
\(222\) 0 0
\(223\) −9.40665 −0.629916 −0.314958 0.949106i \(-0.601990\pi\)
−0.314958 + 0.949106i \(0.601990\pi\)
\(224\) 0 0
\(225\) 2.69774 0.179849
\(226\) 0 0
\(227\) 9.87086 0.655152 0.327576 0.944825i \(-0.393768\pi\)
0.327576 + 0.944825i \(0.393768\pi\)
\(228\) 0 0
\(229\) 0.560533 0.0370411 0.0185205 0.999828i \(-0.494104\pi\)
0.0185205 + 0.999828i \(0.494104\pi\)
\(230\) 0 0
\(231\) −6.90679 −0.454433
\(232\) 0 0
\(233\) −11.1578 −0.730970 −0.365485 0.930817i \(-0.619097\pi\)
−0.365485 + 0.930817i \(0.619097\pi\)
\(234\) 0 0
\(235\) 0.887271 0.0578792
\(236\) 0 0
\(237\) 8.93543 0.580419
\(238\) 0 0
\(239\) 0.427229 0.0276351 0.0138176 0.999905i \(-0.495602\pi\)
0.0138176 + 0.999905i \(0.495602\pi\)
\(240\) 0 0
\(241\) −12.0880 −0.778655 −0.389328 0.921099i \(-0.627293\pi\)
−0.389328 + 0.921099i \(0.627293\pi\)
\(242\) 0 0
\(243\) −7.58501 −0.486579
\(244\) 0 0
\(245\) 43.7816 2.79710
\(246\) 0 0
\(247\) 12.9753 0.825596
\(248\) 0 0
\(249\) −6.84328 −0.433675
\(250\) 0 0
\(251\) 1.62093 0.102312 0.0511562 0.998691i \(-0.483709\pi\)
0.0511562 + 0.998691i \(0.483709\pi\)
\(252\) 0 0
\(253\) −2.48062 −0.155955
\(254\) 0 0
\(255\) 19.1044 1.19636
\(256\) 0 0
\(257\) −17.1372 −1.06899 −0.534495 0.845172i \(-0.679498\pi\)
−0.534495 + 0.845172i \(0.679498\pi\)
\(258\) 0 0
\(259\) 4.68133 0.290884
\(260\) 0 0
\(261\) 2.42723 0.150242
\(262\) 0 0
\(263\) −5.73055 −0.353361 −0.176680 0.984268i \(-0.556536\pi\)
−0.176680 + 0.984268i \(0.556536\pi\)
\(264\) 0 0
\(265\) −16.2499 −0.998225
\(266\) 0 0
\(267\) 30.4671 1.86455
\(268\) 0 0
\(269\) 15.8297 0.965155 0.482577 0.875853i \(-0.339701\pi\)
0.482577 + 0.875853i \(0.339701\pi\)
\(270\) 0 0
\(271\) −12.2059 −0.741458 −0.370729 0.928741i \(-0.620892\pi\)
−0.370729 + 0.928741i \(0.620892\pi\)
\(272\) 0 0
\(273\) −15.9672 −0.966378
\(274\) 0 0
\(275\) −2.75708 −0.166258
\(276\) 0 0
\(277\) 15.2817 0.918188 0.459094 0.888388i \(-0.348174\pi\)
0.459094 + 0.888388i \(0.348174\pi\)
\(278\) 0 0
\(279\) 2.28586 0.136851
\(280\) 0 0
\(281\) 6.03281 0.359887 0.179944 0.983677i \(-0.442408\pi\)
0.179944 + 0.983677i \(0.442408\pi\)
\(282\) 0 0
\(283\) −8.16195 −0.485177 −0.242589 0.970129i \(-0.577997\pi\)
−0.242589 + 0.970129i \(0.577997\pi\)
\(284\) 0 0
\(285\) −41.8297 −2.47778
\(286\) 0 0
\(287\) −34.7693 −2.05237
\(288\) 0 0
\(289\) −5.69251 −0.334853
\(290\) 0 0
\(291\) −31.2007 −1.82902
\(292\) 0 0
\(293\) 11.7501 0.686446 0.343223 0.939254i \(-0.388481\pi\)
0.343223 + 0.939254i \(0.388481\pi\)
\(294\) 0 0
\(295\) −30.0880 −1.75179
\(296\) 0 0
\(297\) 3.32568 0.192975
\(298\) 0 0
\(299\) −5.73472 −0.331647
\(300\) 0 0
\(301\) 57.3460 3.30537
\(302\) 0 0
\(303\) 18.4559 1.06026
\(304\) 0 0
\(305\) −36.1002 −2.06709
\(306\) 0 0
\(307\) −1.67716 −0.0957207 −0.0478603 0.998854i \(-0.515240\pi\)
−0.0478603 + 0.998854i \(0.515240\pi\)
\(308\) 0 0
\(309\) −6.41499 −0.364936
\(310\) 0 0
\(311\) 16.8750 0.956895 0.478448 0.878116i \(-0.341200\pi\)
0.478448 + 0.878116i \(0.341200\pi\)
\(312\) 0 0
\(313\) 2.59619 0.146745 0.0733726 0.997305i \(-0.476624\pi\)
0.0733726 + 0.997305i \(0.476624\pi\)
\(314\) 0 0
\(315\) 10.2499 0.577518
\(316\) 0 0
\(317\) −23.0716 −1.29583 −0.647914 0.761713i \(-0.724359\pi\)
−0.647914 + 0.761713i \(0.724359\pi\)
\(318\) 0 0
\(319\) −2.48062 −0.138888
\(320\) 0 0
\(321\) −33.3145 −1.85943
\(322\) 0 0
\(323\) −24.7581 −1.37758
\(324\) 0 0
\(325\) −6.37384 −0.353557
\(326\) 0 0
\(327\) −39.4423 −2.18116
\(328\) 0 0
\(329\) 1.41499 0.0780110
\(330\) 0 0
\(331\) 8.34625 0.458752 0.229376 0.973338i \(-0.426332\pi\)
0.229376 + 0.973338i \(0.426332\pi\)
\(332\) 0 0
\(333\) 0.745898 0.0408750
\(334\) 0 0
\(335\) 38.6084 2.10940
\(336\) 0 0
\(337\) −17.2377 −0.938997 −0.469499 0.882933i \(-0.655565\pi\)
−0.469499 + 0.882933i \(0.655565\pi\)
\(338\) 0 0
\(339\) −28.5634 −1.55135
\(340\) 0 0
\(341\) −2.33614 −0.126509
\(342\) 0 0
\(343\) 37.0521 2.00062
\(344\) 0 0
\(345\) 18.4876 0.995340
\(346\) 0 0
\(347\) 28.5082 1.53040 0.765200 0.643792i \(-0.222640\pi\)
0.765200 + 0.643792i \(0.222640\pi\)
\(348\) 0 0
\(349\) −16.5082 −0.883664 −0.441832 0.897098i \(-0.645671\pi\)
−0.441832 + 0.897098i \(0.645671\pi\)
\(350\) 0 0
\(351\) 7.68834 0.410373
\(352\) 0 0
\(353\) 13.8709 0.738272 0.369136 0.929375i \(-0.379654\pi\)
0.369136 + 0.929375i \(0.379654\pi\)
\(354\) 0 0
\(355\) 0.508203 0.0269726
\(356\) 0 0
\(357\) 30.4671 1.61249
\(358\) 0 0
\(359\) 29.9477 1.58058 0.790289 0.612735i \(-0.209931\pi\)
0.790289 + 0.612735i \(0.209931\pi\)
\(360\) 0 0
\(361\) 35.2088 1.85309
\(362\) 0 0
\(363\) −20.1651 −1.05839
\(364\) 0 0
\(365\) −3.63317 −0.190169
\(366\) 0 0
\(367\) −23.9588 −1.25064 −0.625321 0.780368i \(-0.715032\pi\)
−0.625321 + 0.780368i \(0.715032\pi\)
\(368\) 0 0
\(369\) −5.53996 −0.288399
\(370\) 0 0
\(371\) −25.9149 −1.34543
\(372\) 0 0
\(373\) −13.7529 −0.712099 −0.356049 0.934467i \(-0.615876\pi\)
−0.356049 + 0.934467i \(0.615876\pi\)
\(374\) 0 0
\(375\) −7.85863 −0.405818
\(376\) 0 0
\(377\) −5.73472 −0.295353
\(378\) 0 0
\(379\) 21.0482 1.08117 0.540586 0.841289i \(-0.318203\pi\)
0.540586 + 0.841289i \(0.318203\pi\)
\(380\) 0 0
\(381\) 13.9784 0.716133
\(382\) 0 0
\(383\) −8.69251 −0.444166 −0.222083 0.975028i \(-0.571286\pi\)
−0.222083 + 0.975028i \(0.571286\pi\)
\(384\) 0 0
\(385\) −10.4754 −0.533875
\(386\) 0 0
\(387\) 9.13720 0.464470
\(388\) 0 0
\(389\) −15.3832 −0.779961 −0.389981 0.920823i \(-0.627518\pi\)
−0.389981 + 0.920823i \(0.627518\pi\)
\(390\) 0 0
\(391\) 10.9424 0.553383
\(392\) 0 0
\(393\) 0.920085 0.0464121
\(394\) 0 0
\(395\) 13.5522 0.681885
\(396\) 0 0
\(397\) −0.648517 −0.0325481 −0.0162741 0.999868i \(-0.505180\pi\)
−0.0162741 + 0.999868i \(0.505180\pi\)
\(398\) 0 0
\(399\) −66.7086 −3.33961
\(400\) 0 0
\(401\) 22.5962 1.12840 0.564200 0.825638i \(-0.309185\pi\)
0.564200 + 0.825638i \(0.309185\pi\)
\(402\) 0 0
\(403\) −5.40070 −0.269028
\(404\) 0 0
\(405\) −31.3543 −1.55801
\(406\) 0 0
\(407\) −0.762305 −0.0377861
\(408\) 0 0
\(409\) 24.9201 1.23222 0.616109 0.787661i \(-0.288708\pi\)
0.616109 + 0.787661i \(0.288708\pi\)
\(410\) 0 0
\(411\) −21.5850 −1.06471
\(412\) 0 0
\(413\) −47.9833 −2.36111
\(414\) 0 0
\(415\) −10.3791 −0.509488
\(416\) 0 0
\(417\) 30.0070 1.46945
\(418\) 0 0
\(419\) −6.41082 −0.313189 −0.156595 0.987663i \(-0.550052\pi\)
−0.156595 + 0.987663i \(0.550052\pi\)
\(420\) 0 0
\(421\) −0.551136 −0.0268607 −0.0134304 0.999910i \(-0.504275\pi\)
−0.0134304 + 0.999910i \(0.504275\pi\)
\(422\) 0 0
\(423\) 0.225457 0.0109621
\(424\) 0 0
\(425\) 12.1619 0.589941
\(426\) 0 0
\(427\) −57.5714 −2.78608
\(428\) 0 0
\(429\) 2.60009 0.125533
\(430\) 0 0
\(431\) −30.8789 −1.48739 −0.743693 0.668521i \(-0.766928\pi\)
−0.743693 + 0.668521i \(0.766928\pi\)
\(432\) 0 0
\(433\) −26.0890 −1.25376 −0.626880 0.779116i \(-0.715668\pi\)
−0.626880 + 0.779116i \(0.715668\pi\)
\(434\) 0 0
\(435\) 18.4876 0.886414
\(436\) 0 0
\(437\) −23.9588 −1.14611
\(438\) 0 0
\(439\) −5.85029 −0.279219 −0.139610 0.990207i \(-0.544585\pi\)
−0.139610 + 0.990207i \(0.544585\pi\)
\(440\) 0 0
\(441\) 11.1250 0.529760
\(442\) 0 0
\(443\) −26.7212 −1.26956 −0.634780 0.772693i \(-0.718909\pi\)
−0.634780 + 0.772693i \(0.718909\pi\)
\(444\) 0 0
\(445\) 46.2088 2.19051
\(446\) 0 0
\(447\) 9.06040 0.428542
\(448\) 0 0
\(449\) 26.8461 1.26695 0.633473 0.773764i \(-0.281629\pi\)
0.633473 + 0.773764i \(0.281629\pi\)
\(450\) 0 0
\(451\) 5.66181 0.266604
\(452\) 0 0
\(453\) 15.1700 0.712750
\(454\) 0 0
\(455\) −24.2171 −1.13532
\(456\) 0 0
\(457\) 13.1455 0.614923 0.307461 0.951561i \(-0.400521\pi\)
0.307461 + 0.951561i \(0.400521\pi\)
\(458\) 0 0
\(459\) −14.6702 −0.684744
\(460\) 0 0
\(461\) 38.2416 1.78109 0.890544 0.454896i \(-0.150324\pi\)
0.890544 + 0.454896i \(0.150324\pi\)
\(462\) 0 0
\(463\) −15.7951 −0.734061 −0.367031 0.930209i \(-0.619626\pi\)
−0.367031 + 0.930209i \(0.619626\pi\)
\(464\) 0 0
\(465\) 17.4108 0.807408
\(466\) 0 0
\(467\) −13.4283 −0.621387 −0.310694 0.950510i \(-0.600561\pi\)
−0.310694 + 0.950510i \(0.600561\pi\)
\(468\) 0 0
\(469\) 61.5714 2.84311
\(470\) 0 0
\(471\) 10.7141 0.493682
\(472\) 0 0
\(473\) −9.33819 −0.429370
\(474\) 0 0
\(475\) −26.6290 −1.22182
\(476\) 0 0
\(477\) −4.12914 −0.189060
\(478\) 0 0
\(479\) 27.2130 1.24339 0.621696 0.783259i \(-0.286444\pi\)
0.621696 + 0.783259i \(0.286444\pi\)
\(480\) 0 0
\(481\) −1.76231 −0.0803542
\(482\) 0 0
\(483\) 29.4835 1.34154
\(484\) 0 0
\(485\) −47.3215 −2.14876
\(486\) 0 0
\(487\) −23.7417 −1.07584 −0.537920 0.842996i \(-0.680790\pi\)
−0.537920 + 0.842996i \(0.680790\pi\)
\(488\) 0 0
\(489\) 3.37100 0.152442
\(490\) 0 0
\(491\) 27.2458 1.22958 0.614792 0.788689i \(-0.289240\pi\)
0.614792 + 0.788689i \(0.289240\pi\)
\(492\) 0 0
\(493\) 10.9424 0.492823
\(494\) 0 0
\(495\) −1.66909 −0.0750201
\(496\) 0 0
\(497\) 0.810466 0.0363544
\(498\) 0 0
\(499\) −3.52461 −0.157783 −0.0788916 0.996883i \(-0.525138\pi\)
−0.0788916 + 0.996883i \(0.525138\pi\)
\(500\) 0 0
\(501\) 45.6074 2.03759
\(502\) 0 0
\(503\) 13.9518 0.622082 0.311041 0.950397i \(-0.399322\pi\)
0.311041 + 0.950397i \(0.399322\pi\)
\(504\) 0 0
\(505\) 27.9917 1.24561
\(506\) 0 0
\(507\) −19.1497 −0.850469
\(508\) 0 0
\(509\) 24.5110 1.08643 0.543216 0.839593i \(-0.317206\pi\)
0.543216 + 0.839593i \(0.317206\pi\)
\(510\) 0 0
\(511\) −5.79406 −0.256314
\(512\) 0 0
\(513\) 32.1208 1.41817
\(514\) 0 0
\(515\) −9.72949 −0.428733
\(516\) 0 0
\(517\) −0.230416 −0.0101337
\(518\) 0 0
\(519\) 17.7857 0.780707
\(520\) 0 0
\(521\) 35.9149 1.57346 0.786729 0.617298i \(-0.211773\pi\)
0.786729 + 0.617298i \(0.211773\pi\)
\(522\) 0 0
\(523\) 15.1784 0.663703 0.331852 0.943332i \(-0.392327\pi\)
0.331852 + 0.943332i \(0.392327\pi\)
\(524\) 0 0
\(525\) 32.7693 1.43017
\(526\) 0 0
\(527\) 10.3051 0.448897
\(528\) 0 0
\(529\) −12.4108 −0.539601
\(530\) 0 0
\(531\) −7.64541 −0.331782
\(532\) 0 0
\(533\) 13.0890 0.566949
\(534\) 0 0
\(535\) −50.5275 −2.18449
\(536\) 0 0
\(537\) 30.9508 1.33562
\(538\) 0 0
\(539\) −11.3697 −0.489726
\(540\) 0 0
\(541\) −12.2981 −0.528736 −0.264368 0.964422i \(-0.585163\pi\)
−0.264368 + 0.964422i \(0.585163\pi\)
\(542\) 0 0
\(543\) −9.98048 −0.428304
\(544\) 0 0
\(545\) −59.8214 −2.56247
\(546\) 0 0
\(547\) 2.38741 0.102078 0.0510391 0.998697i \(-0.483747\pi\)
0.0510391 + 0.998697i \(0.483747\pi\)
\(548\) 0 0
\(549\) −9.17313 −0.391500
\(550\) 0 0
\(551\) −23.9588 −1.02068
\(552\) 0 0
\(553\) 21.6126 0.919061
\(554\) 0 0
\(555\) 5.68133 0.241159
\(556\) 0 0
\(557\) −19.4353 −0.823500 −0.411750 0.911297i \(-0.635082\pi\)
−0.411750 + 0.911297i \(0.635082\pi\)
\(558\) 0 0
\(559\) −21.5881 −0.913080
\(560\) 0 0
\(561\) −4.96124 −0.209464
\(562\) 0 0
\(563\) −28.1432 −1.18609 −0.593046 0.805168i \(-0.702075\pi\)
−0.593046 + 0.805168i \(0.702075\pi\)
\(564\) 0 0
\(565\) −43.3215 −1.82255
\(566\) 0 0
\(567\) −50.0028 −2.09992
\(568\) 0 0
\(569\) −3.48346 −0.146034 −0.0730171 0.997331i \(-0.523263\pi\)
−0.0730171 + 0.997331i \(0.523263\pi\)
\(570\) 0 0
\(571\) −32.4436 −1.35772 −0.678862 0.734266i \(-0.737527\pi\)
−0.678862 + 0.734266i \(0.737527\pi\)
\(572\) 0 0
\(573\) −20.6014 −0.860636
\(574\) 0 0
\(575\) 11.7693 0.490814
\(576\) 0 0
\(577\) 17.2335 0.717441 0.358721 0.933445i \(-0.383213\pi\)
0.358721 + 0.933445i \(0.383213\pi\)
\(578\) 0 0
\(579\) 0.670152 0.0278506
\(580\) 0 0
\(581\) −16.5522 −0.686701
\(582\) 0 0
\(583\) 4.21996 0.174773
\(584\) 0 0
\(585\) −3.85863 −0.159535
\(586\) 0 0
\(587\) 1.07158 0.0442287 0.0221144 0.999755i \(-0.492960\pi\)
0.0221144 + 0.999755i \(0.492960\pi\)
\(588\) 0 0
\(589\) −22.5634 −0.929708
\(590\) 0 0
\(591\) 33.9393 1.39608
\(592\) 0 0
\(593\) −39.7047 −1.63048 −0.815239 0.579124i \(-0.803395\pi\)
−0.815239 + 0.579124i \(0.803395\pi\)
\(594\) 0 0
\(595\) 46.2088 1.89438
\(596\) 0 0
\(597\) 12.3463 0.505299
\(598\) 0 0
\(599\) −30.9864 −1.26607 −0.633036 0.774123i \(-0.718191\pi\)
−0.633036 + 0.774123i \(0.718191\pi\)
\(600\) 0 0
\(601\) −25.4436 −1.03787 −0.518934 0.854814i \(-0.673671\pi\)
−0.518934 + 0.854814i \(0.673671\pi\)
\(602\) 0 0
\(603\) 9.81047 0.399513
\(604\) 0 0
\(605\) −30.5839 −1.24341
\(606\) 0 0
\(607\) 23.1250 0.938613 0.469307 0.883035i \(-0.344504\pi\)
0.469307 + 0.883035i \(0.344504\pi\)
\(608\) 0 0
\(609\) 29.4835 1.19473
\(610\) 0 0
\(611\) −0.532679 −0.0215499
\(612\) 0 0
\(613\) −21.2140 −0.856826 −0.428413 0.903583i \(-0.640927\pi\)
−0.428413 + 0.903583i \(0.640927\pi\)
\(614\) 0 0
\(615\) −42.1965 −1.70153
\(616\) 0 0
\(617\) −20.0318 −0.806448 −0.403224 0.915101i \(-0.632110\pi\)
−0.403224 + 0.915101i \(0.632110\pi\)
\(618\) 0 0
\(619\) 12.7540 0.512625 0.256313 0.966594i \(-0.417492\pi\)
0.256313 + 0.966594i \(0.417492\pi\)
\(620\) 0 0
\(621\) −14.1965 −0.569688
\(622\) 0 0
\(623\) 73.6922 2.95242
\(624\) 0 0
\(625\) −30.0028 −1.20011
\(626\) 0 0
\(627\) 10.8628 0.433818
\(628\) 0 0
\(629\) 3.36266 0.134078
\(630\) 0 0
\(631\) −30.1086 −1.19860 −0.599301 0.800523i \(-0.704555\pi\)
−0.599301 + 0.800523i \(0.704555\pi\)
\(632\) 0 0
\(633\) −41.8378 −1.66290
\(634\) 0 0
\(635\) 21.2007 0.841325
\(636\) 0 0
\(637\) −26.2845 −1.04143
\(638\) 0 0
\(639\) 0.129135 0.00510851
\(640\) 0 0
\(641\) −8.18537 −0.323302 −0.161651 0.986848i \(-0.551682\pi\)
−0.161651 + 0.986848i \(0.551682\pi\)
\(642\) 0 0
\(643\) 6.85446 0.270313 0.135157 0.990824i \(-0.456846\pi\)
0.135157 + 0.990824i \(0.456846\pi\)
\(644\) 0 0
\(645\) 69.5959 2.74034
\(646\) 0 0
\(647\) 2.36683 0.0930497 0.0465248 0.998917i \(-0.485185\pi\)
0.0465248 + 0.998917i \(0.485185\pi\)
\(648\) 0 0
\(649\) 7.81358 0.306710
\(650\) 0 0
\(651\) 27.7662 1.08824
\(652\) 0 0
\(653\) 17.6332 0.690039 0.345020 0.938595i \(-0.387872\pi\)
0.345020 + 0.938595i \(0.387872\pi\)
\(654\) 0 0
\(655\) 1.39547 0.0545257
\(656\) 0 0
\(657\) −0.923195 −0.0360173
\(658\) 0 0
\(659\) −31.7980 −1.23867 −0.619336 0.785126i \(-0.712598\pi\)
−0.619336 + 0.785126i \(0.712598\pi\)
\(660\) 0 0
\(661\) −16.4241 −0.638824 −0.319412 0.947616i \(-0.603485\pi\)
−0.319412 + 0.947616i \(0.603485\pi\)
\(662\) 0 0
\(663\) −11.4694 −0.445436
\(664\) 0 0
\(665\) −101.176 −3.92343
\(666\) 0 0
\(667\) 10.5892 0.410015
\(668\) 0 0
\(669\) −18.2059 −0.703882
\(670\) 0 0
\(671\) 9.37490 0.361914
\(672\) 0 0
\(673\) 7.79796 0.300589 0.150295 0.988641i \(-0.451978\pi\)
0.150295 + 0.988641i \(0.451978\pi\)
\(674\) 0 0
\(675\) −15.7787 −0.607323
\(676\) 0 0
\(677\) −48.3408 −1.85789 −0.928943 0.370223i \(-0.879281\pi\)
−0.928943 + 0.370223i \(0.879281\pi\)
\(678\) 0 0
\(679\) −75.4668 −2.89615
\(680\) 0 0
\(681\) 19.1044 0.732082
\(682\) 0 0
\(683\) 20.8461 0.797655 0.398827 0.917026i \(-0.369417\pi\)
0.398827 + 0.917026i \(0.369417\pi\)
\(684\) 0 0
\(685\) −32.7376 −1.25084
\(686\) 0 0
\(687\) 1.08487 0.0413905
\(688\) 0 0
\(689\) 9.75575 0.371664
\(690\) 0 0
\(691\) 0.692509 0.0263443 0.0131721 0.999913i \(-0.495807\pi\)
0.0131721 + 0.999913i \(0.495807\pi\)
\(692\) 0 0
\(693\) −2.66181 −0.101114
\(694\) 0 0
\(695\) 45.5110 1.72633
\(696\) 0 0
\(697\) −24.9753 −0.946005
\(698\) 0 0
\(699\) −21.5951 −0.816803
\(700\) 0 0
\(701\) 4.03982 0.152582 0.0762910 0.997086i \(-0.475692\pi\)
0.0762910 + 0.997086i \(0.475692\pi\)
\(702\) 0 0
\(703\) −7.36266 −0.277688
\(704\) 0 0
\(705\) 1.71725 0.0646755
\(706\) 0 0
\(707\) 44.6402 1.67887
\(708\) 0 0
\(709\) 18.4272 0.692049 0.346025 0.938225i \(-0.387531\pi\)
0.346025 + 0.938225i \(0.387531\pi\)
\(710\) 0 0
\(711\) 3.44364 0.129146
\(712\) 0 0
\(713\) 9.97241 0.373470
\(714\) 0 0
\(715\) 3.94350 0.147479
\(716\) 0 0
\(717\) 0.826873 0.0308801
\(718\) 0 0
\(719\) −31.7774 −1.18510 −0.592548 0.805535i \(-0.701878\pi\)
−0.592548 + 0.805535i \(0.701878\pi\)
\(720\) 0 0
\(721\) −15.5163 −0.577856
\(722\) 0 0
\(723\) −23.3955 −0.870087
\(724\) 0 0
\(725\) 11.7693 0.437101
\(726\) 0 0
\(727\) 13.8862 0.515011 0.257506 0.966277i \(-0.417099\pi\)
0.257506 + 0.966277i \(0.417099\pi\)
\(728\) 0 0
\(729\) 17.3637 0.643101
\(730\) 0 0
\(731\) 41.1924 1.52356
\(732\) 0 0
\(733\) 46.2939 1.70991 0.854953 0.518706i \(-0.173586\pi\)
0.854953 + 0.518706i \(0.173586\pi\)
\(734\) 0 0
\(735\) 84.7362 3.12554
\(736\) 0 0
\(737\) −10.0263 −0.369322
\(738\) 0 0
\(739\) 19.0451 0.700584 0.350292 0.936641i \(-0.386082\pi\)
0.350292 + 0.936641i \(0.386082\pi\)
\(740\) 0 0
\(741\) 25.1127 0.922539
\(742\) 0 0
\(743\) 24.7141 0.906674 0.453337 0.891339i \(-0.350233\pi\)
0.453337 + 0.891339i \(0.350233\pi\)
\(744\) 0 0
\(745\) 13.7417 0.503458
\(746\) 0 0
\(747\) −2.63734 −0.0964952
\(748\) 0 0
\(749\) −80.5795 −2.94431
\(750\) 0 0
\(751\) 16.9313 0.617831 0.308915 0.951090i \(-0.400034\pi\)
0.308915 + 0.951090i \(0.400034\pi\)
\(752\) 0 0
\(753\) 3.13720 0.114326
\(754\) 0 0
\(755\) 23.0081 0.837349
\(756\) 0 0
\(757\) 25.0786 0.911497 0.455748 0.890109i \(-0.349372\pi\)
0.455748 + 0.890109i \(0.349372\pi\)
\(758\) 0 0
\(759\) −4.80107 −0.174268
\(760\) 0 0
\(761\) −12.2489 −0.444021 −0.222011 0.975044i \(-0.571262\pi\)
−0.222011 + 0.975044i \(0.571262\pi\)
\(762\) 0 0
\(763\) −95.4012 −3.45375
\(764\) 0 0
\(765\) 7.36266 0.266198
\(766\) 0 0
\(767\) 18.0635 0.652235
\(768\) 0 0
\(769\) −12.0328 −0.433914 −0.216957 0.976181i \(-0.569613\pi\)
−0.216957 + 0.976181i \(0.569613\pi\)
\(770\) 0 0
\(771\) −33.1679 −1.19451
\(772\) 0 0
\(773\) 14.4147 0.518462 0.259231 0.965815i \(-0.416531\pi\)
0.259231 + 0.965815i \(0.416531\pi\)
\(774\) 0 0
\(775\) 11.0838 0.398142
\(776\) 0 0
\(777\) 9.06040 0.325040
\(778\) 0 0
\(779\) 54.6842 1.95926
\(780\) 0 0
\(781\) −0.131976 −0.00472247
\(782\) 0 0
\(783\) −14.1965 −0.507343
\(784\) 0 0
\(785\) 16.2499 0.579985
\(786\) 0 0
\(787\) −44.1236 −1.57284 −0.786419 0.617694i \(-0.788067\pi\)
−0.786419 + 0.617694i \(0.788067\pi\)
\(788\) 0 0
\(789\) −11.0911 −0.394853
\(790\) 0 0
\(791\) −69.0877 −2.45648
\(792\) 0 0
\(793\) 21.6730 0.769631
\(794\) 0 0
\(795\) −31.4506 −1.11544
\(796\) 0 0
\(797\) 53.8503 1.90748 0.953738 0.300640i \(-0.0972004\pi\)
0.953738 + 0.300640i \(0.0972004\pi\)
\(798\) 0 0
\(799\) 1.01641 0.0359579
\(800\) 0 0
\(801\) 11.7417 0.414874
\(802\) 0 0
\(803\) 0.943501 0.0332954
\(804\) 0 0
\(805\) 44.7170 1.57607
\(806\) 0 0
\(807\) 30.6373 1.07849
\(808\) 0 0
\(809\) 20.3051 0.713889 0.356945 0.934126i \(-0.383818\pi\)
0.356945 + 0.934126i \(0.383818\pi\)
\(810\) 0 0
\(811\) 9.44648 0.331711 0.165855 0.986150i \(-0.446962\pi\)
0.165855 + 0.986150i \(0.446962\pi\)
\(812\) 0 0
\(813\) −23.6238 −0.828522
\(814\) 0 0
\(815\) 5.11273 0.179091
\(816\) 0 0
\(817\) −90.1921 −3.15542
\(818\) 0 0
\(819\) −6.15361 −0.215025
\(820\) 0 0
\(821\) −33.7118 −1.17655 −0.588274 0.808662i \(-0.700192\pi\)
−0.588274 + 0.808662i \(0.700192\pi\)
\(822\) 0 0
\(823\) −13.9672 −0.486866 −0.243433 0.969918i \(-0.578274\pi\)
−0.243433 + 0.969918i \(0.578274\pi\)
\(824\) 0 0
\(825\) −5.33614 −0.185780
\(826\) 0 0
\(827\) −14.3379 −0.498578 −0.249289 0.968429i \(-0.580197\pi\)
−0.249289 + 0.968429i \(0.580197\pi\)
\(828\) 0 0
\(829\) −4.61676 −0.160347 −0.0801734 0.996781i \(-0.525547\pi\)
−0.0801734 + 0.996781i \(0.525547\pi\)
\(830\) 0 0
\(831\) 29.5767 1.02600
\(832\) 0 0
\(833\) 50.1536 1.73772
\(834\) 0 0
\(835\) 69.1718 2.39379
\(836\) 0 0
\(837\) −13.3697 −0.462123
\(838\) 0 0
\(839\) 55.3871 1.91218 0.956088 0.293079i \(-0.0946800\pi\)
0.956088 + 0.293079i \(0.0946800\pi\)
\(840\) 0 0
\(841\) −18.4108 −0.634856
\(842\) 0 0
\(843\) 11.6761 0.402146
\(844\) 0 0
\(845\) −29.0440 −0.999144
\(846\) 0 0
\(847\) −48.7743 −1.67590
\(848\) 0 0
\(849\) −15.7969 −0.542148
\(850\) 0 0
\(851\) 3.25410 0.111549
\(852\) 0 0
\(853\) 33.7264 1.15477 0.577385 0.816472i \(-0.304073\pi\)
0.577385 + 0.816472i \(0.304073\pi\)
\(854\) 0 0
\(855\) −16.1208 −0.551320
\(856\) 0 0
\(857\) −34.5222 −1.17926 −0.589628 0.807675i \(-0.700726\pi\)
−0.589628 + 0.807675i \(0.700726\pi\)
\(858\) 0 0
\(859\) 56.2311 1.91858 0.959291 0.282420i \(-0.0911372\pi\)
0.959291 + 0.282420i \(0.0911372\pi\)
\(860\) 0 0
\(861\) −67.2937 −2.29336
\(862\) 0 0
\(863\) −24.4342 −0.831751 −0.415876 0.909422i \(-0.636525\pi\)
−0.415876 + 0.909422i \(0.636525\pi\)
\(864\) 0 0
\(865\) 26.9753 0.917186
\(866\) 0 0
\(867\) −11.0175 −0.374173
\(868\) 0 0
\(869\) −3.51938 −0.119387
\(870\) 0 0
\(871\) −23.1788 −0.785384
\(872\) 0 0
\(873\) −12.0245 −0.406967
\(874\) 0 0
\(875\) −19.0081 −0.642590
\(876\) 0 0
\(877\) −42.2416 −1.42640 −0.713199 0.700962i \(-0.752754\pi\)
−0.713199 + 0.700962i \(0.752754\pi\)
\(878\) 0 0
\(879\) 22.7415 0.767050
\(880\) 0 0
\(881\) 43.6524 1.47069 0.735344 0.677694i \(-0.237021\pi\)
0.735344 + 0.677694i \(0.237021\pi\)
\(882\) 0 0
\(883\) 12.4342 0.418445 0.209223 0.977868i \(-0.432907\pi\)
0.209223 + 0.977868i \(0.432907\pi\)
\(884\) 0 0
\(885\) −58.2333 −1.95749
\(886\) 0 0
\(887\) 28.8656 0.969213 0.484607 0.874732i \(-0.338963\pi\)
0.484607 + 0.874732i \(0.338963\pi\)
\(888\) 0 0
\(889\) 33.8102 1.13396
\(890\) 0 0
\(891\) 8.14243 0.272782
\(892\) 0 0
\(893\) −2.22546 −0.0744721
\(894\) 0 0
\(895\) 46.9424 1.56911
\(896\) 0 0
\(897\) −11.0992 −0.370590
\(898\) 0 0
\(899\) 9.97241 0.332599
\(900\) 0 0
\(901\) −18.6150 −0.620155
\(902\) 0 0
\(903\) 110.989 3.69349
\(904\) 0 0
\(905\) −15.1372 −0.503178
\(906\) 0 0
\(907\) −25.0716 −0.832488 −0.416244 0.909253i \(-0.636654\pi\)
−0.416244 + 0.909253i \(0.636654\pi\)
\(908\) 0 0
\(909\) 7.11273 0.235914
\(910\) 0 0
\(911\) −12.4119 −0.411224 −0.205612 0.978634i \(-0.565918\pi\)
−0.205612 + 0.978634i \(0.565918\pi\)
\(912\) 0 0
\(913\) 2.69535 0.0892030
\(914\) 0 0
\(915\) −69.8695 −2.30982
\(916\) 0 0
\(917\) 2.22546 0.0734911
\(918\) 0 0
\(919\) 34.5550 1.13987 0.569933 0.821691i \(-0.306969\pi\)
0.569933 + 0.821691i \(0.306969\pi\)
\(920\) 0 0
\(921\) −3.24603 −0.106960
\(922\) 0 0
\(923\) −0.305103 −0.0100426
\(924\) 0 0
\(925\) 3.61676 0.118918
\(926\) 0 0
\(927\) −2.47228 −0.0812003
\(928\) 0 0
\(929\) 25.1854 0.826305 0.413153 0.910662i \(-0.364428\pi\)
0.413153 + 0.910662i \(0.364428\pi\)
\(930\) 0 0
\(931\) −109.813 −3.59898
\(932\) 0 0
\(933\) 32.6605 1.06926
\(934\) 0 0
\(935\) −7.52461 −0.246081
\(936\) 0 0
\(937\) 26.9518 0.880478 0.440239 0.897881i \(-0.354894\pi\)
0.440239 + 0.897881i \(0.354894\pi\)
\(938\) 0 0
\(939\) 5.02474 0.163976
\(940\) 0 0
\(941\) 10.9096 0.355644 0.177822 0.984063i \(-0.443095\pi\)
0.177822 + 0.984063i \(0.443095\pi\)
\(942\) 0 0
\(943\) −24.1690 −0.787050
\(944\) 0 0
\(945\) −59.9505 −1.95019
\(946\) 0 0
\(947\) 9.45065 0.307105 0.153552 0.988141i \(-0.450929\pi\)
0.153552 + 0.988141i \(0.450929\pi\)
\(948\) 0 0
\(949\) 2.18120 0.0708046
\(950\) 0 0
\(951\) −44.6535 −1.44799
\(952\) 0 0
\(953\) 44.9934 1.45748 0.728740 0.684790i \(-0.240106\pi\)
0.728740 + 0.684790i \(0.240106\pi\)
\(954\) 0 0
\(955\) −31.2458 −1.01109
\(956\) 0 0
\(957\) −4.80107 −0.155197
\(958\) 0 0
\(959\) −52.2088 −1.68591
\(960\) 0 0
\(961\) −21.6084 −0.697046
\(962\) 0 0
\(963\) −12.8391 −0.413735
\(964\) 0 0
\(965\) 1.01641 0.0327193
\(966\) 0 0
\(967\) −8.52355 −0.274099 −0.137049 0.990564i \(-0.543762\pi\)
−0.137049 + 0.990564i \(0.543762\pi\)
\(968\) 0 0
\(969\) −47.9177 −1.53934
\(970\) 0 0
\(971\) 22.8308 0.732674 0.366337 0.930482i \(-0.380612\pi\)
0.366337 + 0.930482i \(0.380612\pi\)
\(972\) 0 0
\(973\) 72.5795 2.32679
\(974\) 0 0
\(975\) −12.3361 −0.395073
\(976\) 0 0
\(977\) −10.6045 −0.339269 −0.169634 0.985507i \(-0.554259\pi\)
−0.169634 + 0.985507i \(0.554259\pi\)
\(978\) 0 0
\(979\) −12.0000 −0.383522
\(980\) 0 0
\(981\) −15.2007 −0.485321
\(982\) 0 0
\(983\) 9.13436 0.291341 0.145670 0.989333i \(-0.453466\pi\)
0.145670 + 0.989333i \(0.453466\pi\)
\(984\) 0 0
\(985\) 51.4751 1.64013
\(986\) 0 0
\(987\) 2.73862 0.0871712
\(988\) 0 0
\(989\) 39.8625 1.26755
\(990\) 0 0
\(991\) 31.8196 1.01078 0.505391 0.862890i \(-0.331348\pi\)
0.505391 + 0.862890i \(0.331348\pi\)
\(992\) 0 0
\(993\) 16.1536 0.512619
\(994\) 0 0
\(995\) 18.7253 0.593633
\(996\) 0 0
\(997\) −2.00000 −0.0633406 −0.0316703 0.999498i \(-0.510083\pi\)
−0.0316703 + 0.999498i \(0.510083\pi\)
\(998\) 0 0
\(999\) −4.36266 −0.138028
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2368.2.a.bb.1.3 3
4.3 odd 2 2368.2.a.be.1.1 3
8.3 odd 2 592.2.a.i.1.3 3
8.5 even 2 296.2.a.c.1.1 3
24.5 odd 2 2664.2.a.p.1.3 3
24.11 even 2 5328.2.a.bn.1.3 3
40.29 even 2 7400.2.a.k.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.a.c.1.1 3 8.5 even 2
592.2.a.i.1.3 3 8.3 odd 2
2368.2.a.bb.1.3 3 1.1 even 1 trivial
2368.2.a.be.1.1 3 4.3 odd 2
2664.2.a.p.1.3 3 24.5 odd 2
5328.2.a.bn.1.3 3 24.11 even 2
7400.2.a.k.1.3 3 40.29 even 2