Properties

Label 2366.2.a.y
Level 2366
Weight 2
Character orbit 2366.a
Self dual yes
Analytic conductor 18.893
Analytic rank 1
Dimension 3
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(18.8926051182\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Defining polynomial: \(x^{3} - x^{2} - 2 x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + ( 1 - \beta ) q^{3} + q^{4} + ( -2 + \beta + \beta^{2} ) q^{5} + ( -1 + \beta ) q^{6} + q^{7} - q^{8} + ( -2 - 2 \beta + \beta^{2} ) q^{9} +O(q^{10})\) \( q - q^{2} + ( 1 - \beta ) q^{3} + q^{4} + ( -2 + \beta + \beta^{2} ) q^{5} + ( -1 + \beta ) q^{6} + q^{7} - q^{8} + ( -2 - 2 \beta + \beta^{2} ) q^{9} + ( 2 - \beta - \beta^{2} ) q^{10} + ( -2 + \beta^{2} ) q^{11} + ( 1 - \beta ) q^{12} - q^{14} + ( -1 + \beta - \beta^{2} ) q^{15} + q^{16} + ( 5 + 2 \beta - 3 \beta^{2} ) q^{17} + ( 2 + 2 \beta - \beta^{2} ) q^{18} + ( -2 + \beta - 2 \beta^{2} ) q^{19} + ( -2 + \beta + \beta^{2} ) q^{20} + ( 1 - \beta ) q^{21} + ( 2 - \beta^{2} ) q^{22} + ( 5 + \beta - 3 \beta^{2} ) q^{23} + ( -1 + \beta ) q^{24} + ( -4 + \beta + 2 \beta^{2} ) q^{25} + ( -4 + \beta + 2 \beta^{2} ) q^{27} + q^{28} + ( 7 - \beta - 3 \beta^{2} ) q^{29} + ( 1 - \beta + \beta^{2} ) q^{30} + ( 2 + 5 \beta - 3 \beta^{2} ) q^{31} - q^{32} - q^{33} + ( -5 - 2 \beta + 3 \beta^{2} ) q^{34} + ( -2 + \beta + \beta^{2} ) q^{35} + ( -2 - 2 \beta + \beta^{2} ) q^{36} + ( -8 + \beta - \beta^{2} ) q^{37} + ( 2 - \beta + 2 \beta^{2} ) q^{38} + ( 2 - \beta - \beta^{2} ) q^{40} + ( 1 - \beta - 3 \beta^{2} ) q^{41} + ( -1 + \beta ) q^{42} + ( 4 - 3 \beta - 2 \beta^{2} ) q^{43} + ( -2 + \beta^{2} ) q^{44} + ( 4 + \beta - 4 \beta^{2} ) q^{45} + ( -5 - \beta + 3 \beta^{2} ) q^{46} + ( -8 - 8 \beta + 5 \beta^{2} ) q^{47} + ( 1 - \beta ) q^{48} + q^{49} + ( 4 - \beta - 2 \beta^{2} ) q^{50} + ( 2 + 3 \beta - 2 \beta^{2} ) q^{51} + ( -5 + 3 \beta ) q^{53} + ( 4 - \beta - 2 \beta^{2} ) q^{54} + ( 2 + \beta ) q^{55} - q^{56} + ( -4 + 7 \beta - \beta^{2} ) q^{57} + ( -7 + \beta + 3 \beta^{2} ) q^{58} + ( -2 - 6 \beta + 3 \beta^{2} ) q^{59} + ( -1 + \beta - \beta^{2} ) q^{60} + ( -12 - 2 \beta + 7 \beta^{2} ) q^{61} + ( -2 - 5 \beta + 3 \beta^{2} ) q^{62} + ( -2 - 2 \beta + \beta^{2} ) q^{63} + q^{64} + q^{66} + 5 \beta q^{67} + ( 5 + 2 \beta - 3 \beta^{2} ) q^{68} + ( 2 + 2 \beta - \beta^{2} ) q^{69} + ( 2 - \beta - \beta^{2} ) q^{70} + ( -7 - 4 \beta + 5 \beta^{2} ) q^{71} + ( 2 + 2 \beta - \beta^{2} ) q^{72} + ( -10 - 11 \beta + 4 \beta^{2} ) q^{73} + ( 8 - \beta + \beta^{2} ) q^{74} + ( -2 + \beta - \beta^{2} ) q^{75} + ( -2 + \beta - 2 \beta^{2} ) q^{76} + ( -2 + \beta^{2} ) q^{77} + ( -15 + 3 \beta + 8 \beta^{2} ) q^{79} + ( -2 + \beta + \beta^{2} ) q^{80} + ( 4 + 7 \beta - 4 \beta^{2} ) q^{81} + ( -1 + \beta + 3 \beta^{2} ) q^{82} + ( -3 - \beta + 3 \beta^{2} ) q^{83} + ( 1 - \beta ) q^{84} + ( -6 - 4 \beta + 3 \beta^{2} ) q^{85} + ( -4 + 3 \beta + 2 \beta^{2} ) q^{86} + ( 4 - 2 \beta + \beta^{2} ) q^{87} + ( 2 - \beta^{2} ) q^{88} + ( 4 + 9 \beta - 7 \beta^{2} ) q^{89} + ( -4 - \beta + 4 \beta^{2} ) q^{90} + ( 5 + \beta - 3 \beta^{2} ) q^{92} + ( -1 + 9 \beta - 5 \beta^{2} ) q^{93} + ( 8 + 8 \beta - 5 \beta^{2} ) q^{94} + ( 7 - 8 \beta - 4 \beta^{2} ) q^{95} + ( -1 + \beta ) q^{96} + ( 3 + \beta + \beta^{2} ) q^{97} - q^{98} + ( 5 + \beta - 3 \beta^{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3q^{2} + 2q^{3} + 3q^{4} - 2q^{6} + 3q^{7} - 3q^{8} - 3q^{9} + O(q^{10}) \) \( 3q - 3q^{2} + 2q^{3} + 3q^{4} - 2q^{6} + 3q^{7} - 3q^{8} - 3q^{9} - q^{11} + 2q^{12} - 3q^{14} - 7q^{15} + 3q^{16} + 2q^{17} + 3q^{18} - 15q^{19} + 2q^{21} + q^{22} + q^{23} - 2q^{24} - q^{25} - q^{27} + 3q^{28} + 5q^{29} + 7q^{30} - 4q^{31} - 3q^{32} - 3q^{33} - 2q^{34} - 3q^{36} - 28q^{37} + 15q^{38} - 13q^{41} - 2q^{42} - q^{43} - q^{44} - 7q^{45} - q^{46} - 7q^{47} + 2q^{48} + 3q^{49} + q^{50} - q^{51} - 12q^{53} + q^{54} + 7q^{55} - 3q^{56} - 10q^{57} - 5q^{58} + 3q^{59} - 7q^{60} - 3q^{61} + 4q^{62} - 3q^{63} + 3q^{64} + 3q^{66} + 5q^{67} + 2q^{68} + 3q^{69} + 3q^{72} - 21q^{73} + 28q^{74} - 10q^{75} - 15q^{76} - q^{77} - 2q^{79} - q^{81} + 13q^{82} + 5q^{83} + 2q^{84} - 7q^{85} + q^{86} + 15q^{87} + q^{88} - 14q^{89} + 7q^{90} + q^{92} - 19q^{93} + 7q^{94} - 7q^{95} - 2q^{96} + 15q^{97} - 3q^{98} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
−1.00000 −0.801938 1.00000 3.04892 0.801938 1.00000 −1.00000 −2.35690 −3.04892
1.2 −1.00000 0.554958 1.00000 −1.35690 −0.554958 1.00000 −1.00000 −2.69202 1.35690
1.3 −1.00000 2.24698 1.00000 −1.69202 −2.24698 1.00000 −1.00000 2.04892 1.69202
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.2.a.y 3
13.b even 2 1 2366.2.a.bd yes 3
13.d odd 4 2 2366.2.d.p 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2366.2.a.y 3 1.a even 1 1 trivial
2366.2.a.bd yes 3 13.b even 2 1
2366.2.d.p 6 13.d odd 4 2

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(-1\)
\(13\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2366))\):

\( T_{3}^{3} - 2 T_{3}^{2} - T_{3} + 1 \)
\( T_{5}^{3} - 7 T_{5} - 7 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{3} \)
$3$ \( 1 - 2 T + 8 T^{2} - 11 T^{3} + 24 T^{4} - 18 T^{5} + 27 T^{6} \)
$5$ \( 1 + 8 T^{2} - 7 T^{3} + 40 T^{4} + 125 T^{6} \)
$7$ \( ( 1 - T )^{3} \)
$11$ \( 1 + T + 31 T^{2} + 21 T^{3} + 341 T^{4} + 121 T^{5} + 1331 T^{6} \)
$13$ 1
$17$ \( 1 - 2 T + 36 T^{2} - 81 T^{3} + 612 T^{4} - 578 T^{5} + 4913 T^{6} \)
$19$ \( 1 + 15 T + 125 T^{2} + 653 T^{3} + 2375 T^{4} + 5415 T^{5} + 6859 T^{6} \)
$23$ \( 1 - T + 53 T^{2} - 59 T^{3} + 1219 T^{4} - 529 T^{5} + 12167 T^{6} \)
$29$ \( 1 - 5 T + 65 T^{2} - 193 T^{3} + 1885 T^{4} - 4205 T^{5} + 24389 T^{6} \)
$31$ \( 1 + 4 T + 54 T^{2} + 289 T^{3} + 1674 T^{4} + 3844 T^{5} + 29791 T^{6} \)
$37$ \( 1 + 28 T + 370 T^{2} + 2863 T^{3} + 13690 T^{4} + 38332 T^{5} + 50653 T^{6} \)
$41$ \( 1 + 13 T + 149 T^{2} + 1067 T^{3} + 6109 T^{4} + 21853 T^{5} + 68921 T^{6} \)
$43$ \( 1 + T + 85 T^{2} + 169 T^{3} + 3655 T^{4} + 1849 T^{5} + 79507 T^{6} \)
$47$ \( 1 + 7 T + 43 T^{2} + 21 T^{3} + 2021 T^{4} + 15463 T^{5} + 103823 T^{6} \)
$53$ \( 1 + 12 T + 186 T^{2} + 1259 T^{3} + 9858 T^{4} + 33708 T^{5} + 148877 T^{6} \)
$59$ \( 1 - 3 T + 117 T^{2} - 481 T^{3} + 6903 T^{4} - 10443 T^{5} + 205379 T^{6} \)
$61$ \( 1 + 3 T + 95 T^{2} + 479 T^{3} + 5795 T^{4} + 11163 T^{5} + 226981 T^{6} \)
$67$ \( 1 - 5 T + 151 T^{2} - 545 T^{3} + 10117 T^{4} - 22445 T^{5} + 300763 T^{6} \)
$71$ \( 1 + 164 T^{2} + 91 T^{3} + 11644 T^{4} + 357911 T^{6} \)
$73$ \( 1 + 21 T + 149 T^{2} + 707 T^{3} + 10877 T^{4} + 111909 T^{5} + 389017 T^{6} \)
$79$ \( 1 + 2 T + 12 T^{2} - 931 T^{3} + 948 T^{4} + 12482 T^{5} + 493039 T^{6} \)
$83$ \( 1 - 5 T + 241 T^{2} - 789 T^{3} + 20003 T^{4} - 34445 T^{5} + 571787 T^{6} \)
$89$ \( 1 + 14 T + 176 T^{2} + 2191 T^{3} + 15664 T^{4} + 110894 T^{5} + 704969 T^{6} \)
$97$ \( 1 - 15 T + 359 T^{2} - 3007 T^{3} + 34823 T^{4} - 141135 T^{5} + 912673 T^{6} \)
show more
show less