Properties

Label 2366.2.a.w
Level 2366
Weight 2
Character orbit 2366.a
Self dual yes
Analytic conductor 18.893
Analytic rank 0
Dimension 3
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a root \(\beta\) of the polynomial \(x^{3} - x^{2} - 2 x + 1\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + ( 2 - \beta - \beta^{2} ) q^{3} + q^{4} + ( 1 + \beta^{2} ) q^{5} + ( -2 + \beta + \beta^{2} ) q^{6} + q^{7} - q^{8} + ( -2 + \beta + 2 \beta^{2} ) q^{9} +O(q^{10})\) \( q - q^{2} + ( 2 - \beta - \beta^{2} ) q^{3} + q^{4} + ( 1 + \beta^{2} ) q^{5} + ( -2 + \beta + \beta^{2} ) q^{6} + q^{7} - q^{8} + ( -2 + \beta + 2 \beta^{2} ) q^{9} + ( -1 - \beta^{2} ) q^{10} + ( 6 + \beta - 2 \beta^{2} ) q^{11} + ( 2 - \beta - \beta^{2} ) q^{12} - q^{14} + ( 4 - 4 \beta - 3 \beta^{2} ) q^{15} + q^{16} + ( 5 + 5 \beta - 2 \beta^{2} ) q^{17} + ( 2 - \beta - 2 \beta^{2} ) q^{18} + ( 7 + \beta - 3 \beta^{2} ) q^{19} + ( 1 + \beta^{2} ) q^{20} + ( 2 - \beta - \beta^{2} ) q^{21} + ( -6 - \beta + 2 \beta^{2} ) q^{22} + ( 2 + 2 \beta - \beta^{2} ) q^{23} + ( -2 + \beta + \beta^{2} ) q^{24} + ( -5 + \beta + 5 \beta^{2} ) q^{25} + ( -5 - \beta - \beta^{2} ) q^{27} + q^{28} + ( -8 - 6 \beta + 7 \beta^{2} ) q^{29} + ( -4 + 4 \beta + 3 \beta^{2} ) q^{30} + ( 7 - 2 \beta + \beta^{2} ) q^{31} - q^{32} + ( 9 - 4 \beta^{2} ) q^{33} + ( -5 - 5 \beta + 2 \beta^{2} ) q^{34} + ( 1 + \beta^{2} ) q^{35} + ( -2 + \beta + 2 \beta^{2} ) q^{36} + ( -9 - 2 \beta + 5 \beta^{2} ) q^{37} + ( -7 - \beta + 3 \beta^{2} ) q^{38} + ( -1 - \beta^{2} ) q^{40} + ( -8 - 4 \beta + 5 \beta^{2} ) q^{41} + ( -2 + \beta + \beta^{2} ) q^{42} + ( -1 - \beta - \beta^{2} ) q^{43} + ( 6 + \beta - 2 \beta^{2} ) q^{44} + ( -5 + 5 \beta + 7 \beta^{2} ) q^{45} + ( -2 - 2 \beta + \beta^{2} ) q^{46} + ( 6 - \beta ) q^{47} + ( 2 - \beta - \beta^{2} ) q^{48} + q^{49} + ( 5 - \beta - 5 \beta^{2} ) q^{50} + ( 11 + \beta - 11 \beta^{2} ) q^{51} + ( -4 - 3 \beta + \beta^{2} ) q^{53} + ( 5 + \beta + \beta^{2} ) q^{54} + ( 7 + \beta - \beta^{2} ) q^{55} - q^{56} + ( 9 + 2 \beta - 3 \beta^{2} ) q^{57} + ( 8 + 6 \beta - 7 \beta^{2} ) q^{58} + ( 4 + 5 \beta - 4 \beta^{2} ) q^{59} + ( 4 - 4 \beta - 3 \beta^{2} ) q^{60} + ( 6 - 3 \beta - 4 \beta^{2} ) q^{61} + ( -7 + 2 \beta - \beta^{2} ) q^{62} + ( -2 + \beta + 2 \beta^{2} ) q^{63} + q^{64} + ( -9 + 4 \beta^{2} ) q^{66} + ( 5 - 5 \beta - 3 \beta^{2} ) q^{67} + ( 5 + 5 \beta - 2 \beta^{2} ) q^{68} + ( 4 + \beta - 4 \beta^{2} ) q^{69} + ( -1 - \beta^{2} ) q^{70} + ( 3 - 5 \beta + 4 \beta^{2} ) q^{71} + ( 2 - \beta - 2 \beta^{2} ) q^{72} + ( 3 - 3 \beta - \beta^{2} ) q^{73} + ( 9 + 2 \beta - 5 \beta^{2} ) q^{74} + ( 1 - 10 \beta - 7 \beta^{2} ) q^{75} + ( 7 + \beta - 3 \beta^{2} ) q^{76} + ( 6 + \beta - 2 \beta^{2} ) q^{77} + ( -10 - 5 \beta + 9 \beta^{2} ) q^{79} + ( 1 + \beta^{2} ) q^{80} + ( -7 + 5 \beta + 3 \beta^{2} ) q^{81} + ( 8 + 4 \beta - 5 \beta^{2} ) q^{82} + ( 10 + 8 \beta - 9 \beta^{2} ) q^{83} + ( 2 - \beta - \beta^{2} ) q^{84} + ( 2 + 13 \beta + 2 \beta^{2} ) q^{85} + ( 1 + \beta + \beta^{2} ) q^{86} + ( -8 - 13 \beta + 6 \beta^{2} ) q^{87} + ( -6 - \beta + 2 \beta^{2} ) q^{88} + ( 3 - 2 \beta - \beta^{2} ) q^{89} + ( 5 - 5 \beta - 7 \beta^{2} ) q^{90} + ( 2 + 2 \beta - \beta^{2} ) q^{92} + ( 14 - 10 \beta - 5 \beta^{2} ) q^{93} + ( -6 + \beta ) q^{94} + ( 9 - 4 \beta^{2} ) q^{95} + ( -2 + \beta + \beta^{2} ) q^{96} + ( -8 + 2 \beta - \beta^{2} ) q^{97} - q^{98} + ( -8 + 5 \beta^{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3q^{2} + 3q^{4} + 8q^{5} + 3q^{7} - 3q^{8} + 5q^{9} + O(q^{10}) \) \( 3q - 3q^{2} + 3q^{4} + 8q^{5} + 3q^{7} - 3q^{8} + 5q^{9} - 8q^{10} + 9q^{11} - 3q^{14} - 7q^{15} + 3q^{16} + 10q^{17} - 5q^{18} + 7q^{19} + 8q^{20} - 9q^{22} + 3q^{23} + 11q^{25} - 21q^{27} + 3q^{28} + 5q^{29} + 7q^{30} + 24q^{31} - 3q^{32} + 7q^{33} - 10q^{34} + 8q^{35} + 5q^{36} - 4q^{37} - 7q^{38} - 8q^{40} - 3q^{41} - 9q^{43} + 9q^{44} + 25q^{45} - 3q^{46} + 17q^{47} + 3q^{49} - 11q^{50} - 21q^{51} - 10q^{53} + 21q^{54} + 17q^{55} - 3q^{56} + 14q^{57} - 5q^{58} - 3q^{59} - 7q^{60} - 5q^{61} - 24q^{62} + 5q^{63} + 3q^{64} - 7q^{66} - 5q^{67} + 10q^{68} - 7q^{69} - 8q^{70} + 24q^{71} - 5q^{72} + q^{73} + 4q^{74} - 42q^{75} + 7q^{76} + 9q^{77} + 10q^{79} + 8q^{80} - q^{81} + 3q^{82} - 7q^{83} + 29q^{85} + 9q^{86} - 7q^{87} - 9q^{88} + 2q^{89} - 25q^{90} + 3q^{92} + 7q^{93} - 17q^{94} + 7q^{95} - 27q^{97} - 3q^{98} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
−1.00000 −3.04892 1.00000 4.24698 3.04892 1.00000 −1.00000 6.29590 −4.24698
1.2 −1.00000 1.35690 1.00000 1.19806 −1.35690 1.00000 −1.00000 −1.15883 −1.19806
1.3 −1.00000 1.69202 1.00000 2.55496 −1.69202 1.00000 −1.00000 −0.137063 −2.55496
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.2.a.w 3
13.b even 2 1 2366.2.a.bb yes 3
13.d odd 4 2 2366.2.d.o 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2366.2.a.w 3 1.a even 1 1 trivial
2366.2.a.bb yes 3 13.b even 2 1
2366.2.d.o 6 13.d odd 4 2

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(-1\)
\(13\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2366))\):

\( T_{3}^{3} - 7 T_{3} + 7 \)
\( T_{5}^{3} - 8 T_{5}^{2} + 19 T_{5} - 13 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{3} \)
$3$ \( 1 + 2 T^{2} + 7 T^{3} + 6 T^{4} + 27 T^{6} \)
$5$ \( 1 - 8 T + 34 T^{2} - 93 T^{3} + 170 T^{4} - 200 T^{5} + 125 T^{6} \)
$7$ \( ( 1 - T )^{3} \)
$11$ \( 1 - 9 T + 53 T^{2} - 211 T^{3} + 583 T^{4} - 1089 T^{5} + 1331 T^{6} \)
$13$ 1
$17$ \( 1 - 10 T + 40 T^{2} - 117 T^{3} + 680 T^{4} - 2890 T^{5} + 4913 T^{6} \)
$19$ \( 1 - 7 T + 57 T^{2} - 259 T^{3} + 1083 T^{4} - 2527 T^{5} + 6859 T^{6} \)
$23$ \( 1 - 3 T + 65 T^{2} - 125 T^{3} + 1495 T^{4} - 1587 T^{5} + 12167 T^{6} \)
$29$ \( 1 - 5 T - 5 T^{2} + 87 T^{3} - 145 T^{4} - 4205 T^{5} + 24389 T^{6} \)
$31$ \( 1 - 24 T + 278 T^{2} - 1951 T^{3} + 8618 T^{4} - 23064 T^{5} + 29791 T^{6} \)
$37$ \( 1 + 4 T + 72 T^{2} + 337 T^{3} + 2664 T^{4} + 5476 T^{5} + 50653 T^{6} \)
$41$ \( 1 + 3 T + 77 T^{2} + 289 T^{3} + 3157 T^{4} + 5043 T^{5} + 68921 T^{6} \)
$43$ \( 1 + 9 T + 149 T^{2} + 787 T^{3} + 6407 T^{4} + 16641 T^{5} + 79507 T^{6} \)
$47$ \( 1 - 17 T + 235 T^{2} - 1767 T^{3} + 11045 T^{4} - 37553 T^{5} + 103823 T^{6} \)
$53$ \( 1 + 10 T + 176 T^{2} + 1019 T^{3} + 9328 T^{4} + 28090 T^{5} + 148877 T^{6} \)
$59$ \( 1 + 3 T + 131 T^{2} + 355 T^{3} + 7729 T^{4} + 10443 T^{5} + 205379 T^{6} \)
$61$ \( 1 + 5 T + 105 T^{2} + 779 T^{3} + 6405 T^{4} + 18605 T^{5} + 226981 T^{6} \)
$67$ \( 1 + 5 T + 95 T^{2} + 867 T^{3} + 6365 T^{4} + 22445 T^{5} + 300763 T^{6} \)
$71$ \( 1 - 24 T + 356 T^{2} - 3577 T^{3} + 25276 T^{4} - 120984 T^{5} + 357911 T^{6} \)
$73$ \( 1 - T + 189 T^{2} - 103 T^{3} + 13797 T^{4} - 5329 T^{5} + 389017 T^{6} \)
$79$ \( 1 - 10 T + 128 T^{2} - 489 T^{3} + 10112 T^{4} - 62410 T^{5} + 493039 T^{6} \)
$83$ \( 1 + 7 T + 95 T^{2} + 371 T^{3} + 7885 T^{4} + 48223 T^{5} + 571787 T^{6} \)
$89$ \( 1 - 2 T + 252 T^{2} - 327 T^{3} + 22428 T^{4} - 15842 T^{5} + 704969 T^{6} \)
$97$ \( 1 + 27 T + 527 T^{2} + 5911 T^{3} + 51119 T^{4} + 254043 T^{5} + 912673 T^{6} \)
show more
show less