Properties

Label 2366.2.a.e
Level 2366
Weight 2
Character orbit 2366.a
Self dual yes
Analytic conductor 18.893
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(18.8926051182\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} - 2q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} - 2q^{9} + 3q^{11} + q^{12} + q^{14} + q^{16} + 2q^{18} - 2q^{19} - q^{21} - 3q^{22} - 3q^{23} - q^{24} - 5q^{25} - 5q^{27} - q^{28} - 5q^{31} - q^{32} + 3q^{33} - 2q^{36} + 7q^{37} + 2q^{38} - 3q^{41} + q^{42} + 8q^{43} + 3q^{44} + 3q^{46} + 3q^{47} + q^{48} + q^{49} + 5q^{50} - 12q^{53} + 5q^{54} + q^{56} - 2q^{57} - 6q^{59} - q^{61} + 5q^{62} + 2q^{63} + q^{64} - 3q^{66} - 5q^{67} - 3q^{69} - 12q^{71} + 2q^{72} - 11q^{73} - 7q^{74} - 5q^{75} - 2q^{76} - 3q^{77} - q^{79} + q^{81} + 3q^{82} - 12q^{83} - q^{84} - 8q^{86} - 3q^{88} + 18q^{89} - 3q^{92} - 5q^{93} - 3q^{94} - q^{96} - 17q^{97} - q^{98} - 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 0 −1.00000 −1.00000 −1.00000 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.2.a.e 1
13.b even 2 1 182.2.a.d 1
13.d odd 4 2 2366.2.d.e 2
39.d odd 2 1 1638.2.a.f 1
52.b odd 2 1 1456.2.a.d 1
65.d even 2 1 4550.2.a.c 1
91.b odd 2 1 1274.2.a.j 1
91.r even 6 2 1274.2.f.d 2
91.s odd 6 2 1274.2.f.i 2
104.e even 2 1 5824.2.a.k 1
104.h odd 2 1 5824.2.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.a.d 1 13.b even 2 1
1274.2.a.j 1 91.b odd 2 1
1274.2.f.d 2 91.r even 6 2
1274.2.f.i 2 91.s odd 6 2
1456.2.a.d 1 52.b odd 2 1
1638.2.a.f 1 39.d odd 2 1
2366.2.a.e 1 1.a even 1 1 trivial
2366.2.d.e 2 13.d odd 4 2
4550.2.a.c 1 65.d even 2 1
5824.2.a.k 1 104.e even 2 1
5824.2.a.x 1 104.h odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(1\)
\(13\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2366))\):

\( T_{3} - 1 \)
\( T_{5} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( 1 - T + 3 T^{2} \)
$5$ \( 1 + 5 T^{2} \)
$7$ \( 1 + T \)
$11$ \( 1 - 3 T + 11 T^{2} \)
$13$ 1
$17$ \( 1 + 17 T^{2} \)
$19$ \( 1 + 2 T + 19 T^{2} \)
$23$ \( 1 + 3 T + 23 T^{2} \)
$29$ \( 1 + 29 T^{2} \)
$31$ \( 1 + 5 T + 31 T^{2} \)
$37$ \( 1 - 7 T + 37 T^{2} \)
$41$ \( 1 + 3 T + 41 T^{2} \)
$43$ \( 1 - 8 T + 43 T^{2} \)
$47$ \( 1 - 3 T + 47 T^{2} \)
$53$ \( 1 + 12 T + 53 T^{2} \)
$59$ \( 1 + 6 T + 59 T^{2} \)
$61$ \( 1 + T + 61 T^{2} \)
$67$ \( 1 + 5 T + 67 T^{2} \)
$71$ \( 1 + 12 T + 71 T^{2} \)
$73$ \( 1 + 11 T + 73 T^{2} \)
$79$ \( 1 + T + 79 T^{2} \)
$83$ \( 1 + 12 T + 83 T^{2} \)
$89$ \( 1 - 18 T + 89 T^{2} \)
$97$ \( 1 + 17 T + 97 T^{2} \)
show more
show less