Properties

Label 2365.2.bw
Level 2365
Weight 2
Character orbit bw
Rep. character \(\chi_{2365}(452,\cdot)\)
Character field \(\Q(\zeta_{28})\)
Dimension 2640
Sturm bound 528

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2365 = 5 \cdot 11 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2365.bw (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 215 \)
Character field: \(\Q(\zeta_{28})\)
Sturm bound: \(528\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2365, [\chi])\).

Total New Old
Modular forms 3216 2640 576
Cusp forms 3120 2640 480
Eisenstein series 96 0 96

Trace form

\( 2640q - 16q^{6} + O(q^{10}) \) \( 2640q - 16q^{6} + 400q^{16} + 32q^{21} - 16q^{23} + 280q^{30} + 64q^{31} - 280q^{32} + 48q^{35} + 2592q^{36} - 24q^{38} + 80q^{40} + 32q^{41} - 104q^{43} + 40q^{47} - 112q^{51} + 8q^{52} - 40q^{53} - 40q^{57} - 280q^{60} + 104q^{68} - 280q^{70} - 280q^{72} - 112q^{73} - 168q^{78} + 240q^{81} - 140q^{82} - 56q^{83} - 296q^{86} - 392q^{87} + 8q^{90} - 104q^{92} - 120q^{95} + 256q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2365, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2365, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2365, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(215, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database