Properties

Label 2365.2.bn
Level 2365
Weight 2
Character orbit bn
Rep. character \(\chi_{2365}(914,\cdot)\)
Character field \(\Q(\zeta_{14})\)
Dimension 1320
Sturm bound 528

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2365 = 5 \cdot 11 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2365.bn (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 215 \)
Character field: \(\Q(\zeta_{14})\)
Sturm bound: \(528\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2365, [\chi])\).

Total New Old
Modular forms 1608 1320 288
Cusp forms 1560 1320 240
Eisenstein series 48 0 48

Trace form

\( 1320q + 220q^{4} - 8q^{6} + 200q^{9} + O(q^{10}) \) \( 1320q + 220q^{4} - 8q^{6} + 200q^{9} - 12q^{14} - 200q^{16} + 16q^{19} + 28q^{20} - 48q^{21} - 32q^{24} - 20q^{25} + 16q^{26} + 72q^{29} + 104q^{30} + 32q^{31} - 8q^{34} - 28q^{35} + 1376q^{36} - 24q^{39} - 40q^{40} - 32q^{41} + 8q^{44} - 20q^{45} + 56q^{46} - 1272q^{49} - 120q^{50} + 128q^{51} - 72q^{54} + 24q^{56} + 16q^{59} + 140q^{60} - 48q^{61} + 236q^{64} - 12q^{65} - 12q^{69} + 112q^{70} + 8q^{71} - 64q^{74} - 140q^{75} - 96q^{76} - 72q^{79} - 112q^{80} - 120q^{81} - 36q^{84} + 60q^{85} + 104q^{86} - 36q^{89} - 14q^{90} - 64q^{91} - 120q^{94} + 80q^{95} - 328q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2365, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2365, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2365, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(215, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database