Properties

Label 2352.4.a.v
Level $2352$
Weight $4$
Character orbit 2352.a
Self dual yes
Analytic conductor $138.772$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,4,Mod(1,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2352.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(138.772492334\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} - 14 q^{5} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} - 14 q^{5} + 9 q^{9} - 4 q^{11} - 54 q^{13} - 42 q^{15} + 14 q^{17} + 92 q^{19} + 152 q^{23} + 71 q^{25} + 27 q^{27} - 106 q^{29} - 144 q^{31} - 12 q^{33} + 158 q^{37} - 162 q^{39} + 390 q^{41} + 508 q^{43} - 126 q^{45} - 528 q^{47} + 42 q^{51} + 606 q^{53} + 56 q^{55} + 276 q^{57} - 364 q^{59} - 678 q^{61} + 756 q^{65} - 844 q^{67} + 456 q^{69} + 8 q^{71} + 422 q^{73} + 213 q^{75} - 384 q^{79} + 81 q^{81} - 548 q^{83} - 196 q^{85} - 318 q^{87} - 1194 q^{89} - 432 q^{93} - 1288 q^{95} + 1502 q^{97} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −14.0000 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.4.a.v 1
4.b odd 2 1 588.4.a.a 1
7.b odd 2 1 336.4.a.e 1
12.b even 2 1 1764.4.a.l 1
21.c even 2 1 1008.4.a.d 1
28.d even 2 1 84.4.a.b 1
28.f even 6 2 588.4.i.a 2
28.g odd 6 2 588.4.i.h 2
56.e even 2 1 1344.4.a.b 1
56.h odd 2 1 1344.4.a.p 1
84.h odd 2 1 252.4.a.a 1
84.j odd 6 2 1764.4.k.n 2
84.n even 6 2 1764.4.k.c 2
140.c even 2 1 2100.4.a.g 1
140.j odd 4 2 2100.4.k.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.a.b 1 28.d even 2 1
252.4.a.a 1 84.h odd 2 1
336.4.a.e 1 7.b odd 2 1
588.4.a.a 1 4.b odd 2 1
588.4.i.a 2 28.f even 6 2
588.4.i.h 2 28.g odd 6 2
1008.4.a.d 1 21.c even 2 1
1344.4.a.b 1 56.e even 2 1
1344.4.a.p 1 56.h odd 2 1
1764.4.a.l 1 12.b even 2 1
1764.4.k.c 2 84.n even 6 2
1764.4.k.n 2 84.j odd 6 2
2100.4.a.g 1 140.c even 2 1
2100.4.k.g 2 140.j odd 4 2
2352.4.a.v 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2352))\):

\( T_{5} + 14 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 14 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T + 54 \) Copy content Toggle raw display
$17$ \( T - 14 \) Copy content Toggle raw display
$19$ \( T - 92 \) Copy content Toggle raw display
$23$ \( T - 152 \) Copy content Toggle raw display
$29$ \( T + 106 \) Copy content Toggle raw display
$31$ \( T + 144 \) Copy content Toggle raw display
$37$ \( T - 158 \) Copy content Toggle raw display
$41$ \( T - 390 \) Copy content Toggle raw display
$43$ \( T - 508 \) Copy content Toggle raw display
$47$ \( T + 528 \) Copy content Toggle raw display
$53$ \( T - 606 \) Copy content Toggle raw display
$59$ \( T + 364 \) Copy content Toggle raw display
$61$ \( T + 678 \) Copy content Toggle raw display
$67$ \( T + 844 \) Copy content Toggle raw display
$71$ \( T - 8 \) Copy content Toggle raw display
$73$ \( T - 422 \) Copy content Toggle raw display
$79$ \( T + 384 \) Copy content Toggle raw display
$83$ \( T + 548 \) Copy content Toggle raw display
$89$ \( T + 1194 \) Copy content Toggle raw display
$97$ \( T - 1502 \) Copy content Toggle raw display
show more
show less