Properties

Label 2352.4.a.cl.1.2
Level $2352$
Weight $4$
Character 2352.1
Self dual yes
Analytic conductor $138.772$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2352.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(138.772492334\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.136768.1
Defining polynomial: \(x^{4} - 2 x^{3} - 23 x^{2} + 18 x + 119\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 7 \)
Twist minimal: no (minimal twist has level 588)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.51732\) of defining polynomial
Character \(\chi\) \(=\) 2352.1

$q$-expansion

\(f(q)\) \(=\) \(q-3.00000 q^{3} -10.6550 q^{5} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} -10.6550 q^{5} +9.00000 q^{9} +6.65399 q^{11} +75.9335 q^{13} +31.9651 q^{15} -104.287 q^{17} -85.4943 q^{19} +68.6733 q^{23} -11.4700 q^{25} -27.0000 q^{27} +87.7843 q^{29} -62.7683 q^{31} -19.9620 q^{33} +42.2093 q^{37} -227.800 q^{39} +313.904 q^{41} -306.591 q^{43} -95.8954 q^{45} -215.081 q^{47} +312.861 q^{51} +525.024 q^{53} -70.8986 q^{55} +256.483 q^{57} -360.491 q^{59} +800.726 q^{61} -809.075 q^{65} +40.2286 q^{67} -206.020 q^{69} +298.781 q^{71} +517.126 q^{73} +34.4099 q^{75} +1222.47 q^{79} +81.0000 q^{81} -1328.55 q^{83} +1111.18 q^{85} -263.353 q^{87} -639.938 q^{89} +188.305 q^{93} +910.946 q^{95} +1425.65 q^{97} +59.8859 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 12q^{3} + 36q^{9} + O(q^{10}) \) \( 4q - 12q^{3} + 36q^{9} + 48q^{17} - 192q^{19} - 192q^{23} + 324q^{25} - 108q^{27} + 96q^{29} - 48q^{31} + 256q^{37} + 1008q^{41} + 112q^{43} - 864q^{47} - 144q^{51} - 648q^{53} - 2352q^{55} + 576q^{57} - 336q^{59} + 960q^{61} - 360q^{65} - 720q^{67} + 576q^{69} + 1344q^{71} + 672q^{73} - 972q^{75} + 1984q^{79} + 324q^{81} - 3120q^{83} + 680q^{85} - 288q^{87} + 2160q^{89} + 144q^{93} + 3744q^{95} + 2016q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −10.6550 −0.953016 −0.476508 0.879170i \(-0.658098\pi\)
−0.476508 + 0.879170i \(0.658098\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 6.65399 0.182387 0.0911933 0.995833i \(-0.470932\pi\)
0.0911933 + 0.995833i \(0.470932\pi\)
\(12\) 0 0
\(13\) 75.9335 1.62001 0.810006 0.586422i \(-0.199464\pi\)
0.810006 + 0.586422i \(0.199464\pi\)
\(14\) 0 0
\(15\) 31.9651 0.550224
\(16\) 0 0
\(17\) −104.287 −1.48784 −0.743921 0.668268i \(-0.767036\pi\)
−0.743921 + 0.668268i \(0.767036\pi\)
\(18\) 0 0
\(19\) −85.4943 −1.03230 −0.516151 0.856498i \(-0.672636\pi\)
−0.516151 + 0.856498i \(0.672636\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 68.6733 0.622581 0.311291 0.950315i \(-0.399239\pi\)
0.311291 + 0.950315i \(0.399239\pi\)
\(24\) 0 0
\(25\) −11.4700 −0.0917596
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 87.7843 0.562108 0.281054 0.959692i \(-0.409316\pi\)
0.281054 + 0.959692i \(0.409316\pi\)
\(30\) 0 0
\(31\) −62.7683 −0.363662 −0.181831 0.983330i \(-0.558202\pi\)
−0.181831 + 0.983330i \(0.558202\pi\)
\(32\) 0 0
\(33\) −19.9620 −0.105301
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 42.2093 0.187545 0.0937726 0.995594i \(-0.470107\pi\)
0.0937726 + 0.995594i \(0.470107\pi\)
\(38\) 0 0
\(39\) −227.800 −0.935314
\(40\) 0 0
\(41\) 313.904 1.19570 0.597848 0.801609i \(-0.296023\pi\)
0.597848 + 0.801609i \(0.296023\pi\)
\(42\) 0 0
\(43\) −306.591 −1.08732 −0.543659 0.839306i \(-0.682962\pi\)
−0.543659 + 0.839306i \(0.682962\pi\)
\(44\) 0 0
\(45\) −95.8954 −0.317672
\(46\) 0 0
\(47\) −215.081 −0.667508 −0.333754 0.942660i \(-0.608315\pi\)
−0.333754 + 0.942660i \(0.608315\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 312.861 0.859006
\(52\) 0 0
\(53\) 525.024 1.36071 0.680354 0.732884i \(-0.261826\pi\)
0.680354 + 0.732884i \(0.261826\pi\)
\(54\) 0 0
\(55\) −70.8986 −0.173818
\(56\) 0 0
\(57\) 256.483 0.596000
\(58\) 0 0
\(59\) −360.491 −0.795457 −0.397729 0.917503i \(-0.630201\pi\)
−0.397729 + 0.917503i \(0.630201\pi\)
\(60\) 0 0
\(61\) 800.726 1.68070 0.840348 0.542048i \(-0.182351\pi\)
0.840348 + 0.542048i \(0.182351\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −809.075 −1.54390
\(66\) 0 0
\(67\) 40.2286 0.0733538 0.0366769 0.999327i \(-0.488323\pi\)
0.0366769 + 0.999327i \(0.488323\pi\)
\(68\) 0 0
\(69\) −206.020 −0.359447
\(70\) 0 0
\(71\) 298.781 0.499419 0.249709 0.968321i \(-0.419665\pi\)
0.249709 + 0.968321i \(0.419665\pi\)
\(72\) 0 0
\(73\) 517.126 0.829110 0.414555 0.910024i \(-0.363937\pi\)
0.414555 + 0.910024i \(0.363937\pi\)
\(74\) 0 0
\(75\) 34.4099 0.0529774
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1222.47 1.74099 0.870494 0.492178i \(-0.163799\pi\)
0.870494 + 0.492178i \(0.163799\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1328.55 −1.75696 −0.878479 0.477782i \(-0.841441\pi\)
−0.878479 + 0.477782i \(0.841441\pi\)
\(84\) 0 0
\(85\) 1111.18 1.41794
\(86\) 0 0
\(87\) −263.353 −0.324533
\(88\) 0 0
\(89\) −639.938 −0.762172 −0.381086 0.924540i \(-0.624450\pi\)
−0.381086 + 0.924540i \(0.624450\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 188.305 0.209960
\(94\) 0 0
\(95\) 910.946 0.983801
\(96\) 0 0
\(97\) 1425.65 1.49230 0.746149 0.665779i \(-0.231901\pi\)
0.746149 + 0.665779i \(0.231901\pi\)
\(98\) 0 0
\(99\) 59.8859 0.0607956
\(100\) 0 0
\(101\) −992.170 −0.977471 −0.488736 0.872432i \(-0.662542\pi\)
−0.488736 + 0.872432i \(0.662542\pi\)
\(102\) 0 0
\(103\) −267.572 −0.255967 −0.127984 0.991776i \(-0.540851\pi\)
−0.127984 + 0.991776i \(0.540851\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1536.62 1.38833 0.694164 0.719817i \(-0.255774\pi\)
0.694164 + 0.719817i \(0.255774\pi\)
\(108\) 0 0
\(109\) 998.820 0.877703 0.438852 0.898560i \(-0.355385\pi\)
0.438852 + 0.898560i \(0.355385\pi\)
\(110\) 0 0
\(111\) −126.628 −0.108279
\(112\) 0 0
\(113\) 939.006 0.781719 0.390860 0.920450i \(-0.372178\pi\)
0.390860 + 0.920450i \(0.372178\pi\)
\(114\) 0 0
\(115\) −731.717 −0.593330
\(116\) 0 0
\(117\) 683.401 0.540004
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1286.72 −0.966735
\(122\) 0 0
\(123\) −941.712 −0.690336
\(124\) 0 0
\(125\) 1454.09 1.04046
\(126\) 0 0
\(127\) 1621.27 1.13279 0.566397 0.824133i \(-0.308337\pi\)
0.566397 + 0.824133i \(0.308337\pi\)
\(128\) 0 0
\(129\) 919.773 0.627764
\(130\) 0 0
\(131\) −1518.43 −1.01271 −0.506357 0.862324i \(-0.669008\pi\)
−0.506357 + 0.862324i \(0.669008\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 287.686 0.183408
\(136\) 0 0
\(137\) −2484.99 −1.54969 −0.774844 0.632152i \(-0.782172\pi\)
−0.774844 + 0.632152i \(0.782172\pi\)
\(138\) 0 0
\(139\) 1655.36 1.01011 0.505057 0.863086i \(-0.331471\pi\)
0.505057 + 0.863086i \(0.331471\pi\)
\(140\) 0 0
\(141\) 645.244 0.385386
\(142\) 0 0
\(143\) 505.260 0.295469
\(144\) 0 0
\(145\) −935.346 −0.535698
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 350.191 0.192542 0.0962709 0.995355i \(-0.469308\pi\)
0.0962709 + 0.995355i \(0.469308\pi\)
\(150\) 0 0
\(151\) −3338.14 −1.79903 −0.899516 0.436888i \(-0.856081\pi\)
−0.899516 + 0.436888i \(0.856081\pi\)
\(152\) 0 0
\(153\) −938.583 −0.495947
\(154\) 0 0
\(155\) 668.799 0.346576
\(156\) 0 0
\(157\) −1743.67 −0.886371 −0.443185 0.896430i \(-0.646152\pi\)
−0.443185 + 0.896430i \(0.646152\pi\)
\(158\) 0 0
\(159\) −1575.07 −0.785605
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3431.56 −1.64896 −0.824480 0.565891i \(-0.808532\pi\)
−0.824480 + 0.565891i \(0.808532\pi\)
\(164\) 0 0
\(165\) 212.696 0.100354
\(166\) 0 0
\(167\) −3381.05 −1.56667 −0.783335 0.621600i \(-0.786483\pi\)
−0.783335 + 0.621600i \(0.786483\pi\)
\(168\) 0 0
\(169\) 3568.89 1.62444
\(170\) 0 0
\(171\) −769.449 −0.344101
\(172\) 0 0
\(173\) −1341.00 −0.589332 −0.294666 0.955600i \(-0.595208\pi\)
−0.294666 + 0.955600i \(0.595208\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1081.47 0.459257
\(178\) 0 0
\(179\) −1125.15 −0.469818 −0.234909 0.972017i \(-0.575479\pi\)
−0.234909 + 0.972017i \(0.575479\pi\)
\(180\) 0 0
\(181\) −3535.04 −1.45170 −0.725848 0.687855i \(-0.758553\pi\)
−0.725848 + 0.687855i \(0.758553\pi\)
\(182\) 0 0
\(183\) −2402.18 −0.970350
\(184\) 0 0
\(185\) −449.742 −0.178734
\(186\) 0 0
\(187\) −693.925 −0.271363
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2639.89 −1.00008 −0.500041 0.866001i \(-0.666682\pi\)
−0.500041 + 0.866001i \(0.666682\pi\)
\(192\) 0 0
\(193\) 1047.05 0.390510 0.195255 0.980752i \(-0.437447\pi\)
0.195255 + 0.980752i \(0.437447\pi\)
\(194\) 0 0
\(195\) 2427.22 0.891370
\(196\) 0 0
\(197\) −4585.45 −1.65837 −0.829187 0.558972i \(-0.811196\pi\)
−0.829187 + 0.558972i \(0.811196\pi\)
\(198\) 0 0
\(199\) −830.742 −0.295928 −0.147964 0.988993i \(-0.547272\pi\)
−0.147964 + 0.988993i \(0.547272\pi\)
\(200\) 0 0
\(201\) −120.686 −0.0423508
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3344.66 −1.13952
\(206\) 0 0
\(207\) 618.059 0.207527
\(208\) 0 0
\(209\) −568.878 −0.188278
\(210\) 0 0
\(211\) 2630.08 0.858114 0.429057 0.903277i \(-0.358846\pi\)
0.429057 + 0.903277i \(0.358846\pi\)
\(212\) 0 0
\(213\) −896.342 −0.288340
\(214\) 0 0
\(215\) 3266.74 1.03623
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1551.38 −0.478687
\(220\) 0 0
\(221\) −7918.87 −2.41032
\(222\) 0 0
\(223\) 863.988 0.259448 0.129724 0.991550i \(-0.458591\pi\)
0.129724 + 0.991550i \(0.458591\pi\)
\(224\) 0 0
\(225\) −103.230 −0.0305865
\(226\) 0 0
\(227\) 4160.36 1.21644 0.608221 0.793767i \(-0.291883\pi\)
0.608221 + 0.793767i \(0.291883\pi\)
\(228\) 0 0
\(229\) −181.210 −0.0522914 −0.0261457 0.999658i \(-0.508323\pi\)
−0.0261457 + 0.999658i \(0.508323\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2150.45 0.604637 0.302319 0.953207i \(-0.402239\pi\)
0.302319 + 0.953207i \(0.402239\pi\)
\(234\) 0 0
\(235\) 2291.70 0.636146
\(236\) 0 0
\(237\) −3667.40 −1.00516
\(238\) 0 0
\(239\) 6939.47 1.87815 0.939073 0.343719i \(-0.111687\pi\)
0.939073 + 0.343719i \(0.111687\pi\)
\(240\) 0 0
\(241\) −206.170 −0.0551060 −0.0275530 0.999620i \(-0.508772\pi\)
−0.0275530 + 0.999620i \(0.508772\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6491.88 −1.67234
\(248\) 0 0
\(249\) 3985.65 1.01438
\(250\) 0 0
\(251\) −5011.93 −1.26036 −0.630180 0.776449i \(-0.717019\pi\)
−0.630180 + 0.776449i \(0.717019\pi\)
\(252\) 0 0
\(253\) 456.951 0.113551
\(254\) 0 0
\(255\) −3333.55 −0.818647
\(256\) 0 0
\(257\) −5863.08 −1.42307 −0.711535 0.702651i \(-0.752000\pi\)
−0.711535 + 0.702651i \(0.752000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 790.059 0.187369
\(262\) 0 0
\(263\) 5639.56 1.32224 0.661122 0.750279i \(-0.270081\pi\)
0.661122 + 0.750279i \(0.270081\pi\)
\(264\) 0 0
\(265\) −5594.15 −1.29678
\(266\) 0 0
\(267\) 1919.81 0.440040
\(268\) 0 0
\(269\) −2976.63 −0.674679 −0.337339 0.941383i \(-0.609527\pi\)
−0.337339 + 0.941383i \(0.609527\pi\)
\(270\) 0 0
\(271\) 2807.33 0.629275 0.314637 0.949212i \(-0.398117\pi\)
0.314637 + 0.949212i \(0.398117\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −76.3210 −0.0167357
\(276\) 0 0
\(277\) −1918.39 −0.416118 −0.208059 0.978116i \(-0.566715\pi\)
−0.208059 + 0.978116i \(0.566715\pi\)
\(278\) 0 0
\(279\) −564.915 −0.121221
\(280\) 0 0
\(281\) 5209.50 1.10595 0.552977 0.833197i \(-0.313492\pi\)
0.552977 + 0.833197i \(0.313492\pi\)
\(282\) 0 0
\(283\) −7496.70 −1.57467 −0.787337 0.616523i \(-0.788541\pi\)
−0.787337 + 0.616523i \(0.788541\pi\)
\(284\) 0 0
\(285\) −2732.84 −0.567998
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5962.78 1.21367
\(290\) 0 0
\(291\) −4276.95 −0.861579
\(292\) 0 0
\(293\) −3358.94 −0.669732 −0.334866 0.942266i \(-0.608691\pi\)
−0.334866 + 0.942266i \(0.608691\pi\)
\(294\) 0 0
\(295\) 3841.05 0.758084
\(296\) 0 0
\(297\) −179.658 −0.0351003
\(298\) 0 0
\(299\) 5214.60 1.00859
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2976.51 0.564343
\(304\) 0 0
\(305\) −8531.77 −1.60173
\(306\) 0 0
\(307\) 7330.92 1.36286 0.681429 0.731884i \(-0.261359\pi\)
0.681429 + 0.731884i \(0.261359\pi\)
\(308\) 0 0
\(309\) 802.716 0.147783
\(310\) 0 0
\(311\) 2038.53 0.371687 0.185843 0.982579i \(-0.440498\pi\)
0.185843 + 0.982579i \(0.440498\pi\)
\(312\) 0 0
\(313\) 4138.87 0.747421 0.373711 0.927545i \(-0.378085\pi\)
0.373711 + 0.927545i \(0.378085\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7552.25 −1.33810 −0.669049 0.743219i \(-0.733298\pi\)
−0.669049 + 0.743219i \(0.733298\pi\)
\(318\) 0 0
\(319\) 584.116 0.102521
\(320\) 0 0
\(321\) −4609.87 −0.801552
\(322\) 0 0
\(323\) 8915.94 1.53590
\(324\) 0 0
\(325\) −870.953 −0.148652
\(326\) 0 0
\(327\) −2996.46 −0.506742
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −5577.70 −0.926218 −0.463109 0.886301i \(-0.653266\pi\)
−0.463109 + 0.886301i \(0.653266\pi\)
\(332\) 0 0
\(333\) 379.884 0.0625151
\(334\) 0 0
\(335\) −428.637 −0.0699073
\(336\) 0 0
\(337\) 4467.16 0.722083 0.361041 0.932550i \(-0.382421\pi\)
0.361041 + 0.932550i \(0.382421\pi\)
\(338\) 0 0
\(339\) −2817.02 −0.451326
\(340\) 0 0
\(341\) −417.660 −0.0663271
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2195.15 0.342559
\(346\) 0 0
\(347\) −9788.41 −1.51432 −0.757161 0.653229i \(-0.773414\pi\)
−0.757161 + 0.653229i \(0.773414\pi\)
\(348\) 0 0
\(349\) −4746.95 −0.728075 −0.364038 0.931384i \(-0.618602\pi\)
−0.364038 + 0.931384i \(0.618602\pi\)
\(350\) 0 0
\(351\) −2050.20 −0.311771
\(352\) 0 0
\(353\) −9434.66 −1.42254 −0.711269 0.702920i \(-0.751879\pi\)
−0.711269 + 0.702920i \(0.751879\pi\)
\(354\) 0 0
\(355\) −3183.52 −0.475954
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11307.5 −1.66237 −0.831183 0.555999i \(-0.812336\pi\)
−0.831183 + 0.555999i \(0.812336\pi\)
\(360\) 0 0
\(361\) 450.275 0.0656474
\(362\) 0 0
\(363\) 3860.17 0.558145
\(364\) 0 0
\(365\) −5510.00 −0.790155
\(366\) 0 0
\(367\) −6089.61 −0.866144 −0.433072 0.901359i \(-0.642570\pi\)
−0.433072 + 0.901359i \(0.642570\pi\)
\(368\) 0 0
\(369\) 2825.14 0.398565
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2601.84 −0.361175 −0.180588 0.983559i \(-0.557800\pi\)
−0.180588 + 0.983559i \(0.557800\pi\)
\(374\) 0 0
\(375\) −4362.28 −0.600713
\(376\) 0 0
\(377\) 6665.77 0.910622
\(378\) 0 0
\(379\) −10416.2 −1.41173 −0.705865 0.708347i \(-0.749441\pi\)
−0.705865 + 0.708347i \(0.749441\pi\)
\(380\) 0 0
\(381\) −4863.82 −0.654018
\(382\) 0 0
\(383\) 1664.46 0.222063 0.111031 0.993817i \(-0.464585\pi\)
0.111031 + 0.993817i \(0.464585\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2759.32 −0.362440
\(388\) 0 0
\(389\) −1334.16 −0.173893 −0.0869465 0.996213i \(-0.527711\pi\)
−0.0869465 + 0.996213i \(0.527711\pi\)
\(390\) 0 0
\(391\) −7161.73 −0.926302
\(392\) 0 0
\(393\) 4555.28 0.584691
\(394\) 0 0
\(395\) −13025.4 −1.65919
\(396\) 0 0
\(397\) 4444.88 0.561920 0.280960 0.959720i \(-0.409347\pi\)
0.280960 + 0.959720i \(0.409347\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2649.82 −0.329989 −0.164995 0.986294i \(-0.552761\pi\)
−0.164995 + 0.986294i \(0.552761\pi\)
\(402\) 0 0
\(403\) −4766.21 −0.589137
\(404\) 0 0
\(405\) −863.059 −0.105891
\(406\) 0 0
\(407\) 280.860 0.0342057
\(408\) 0 0
\(409\) −9592.66 −1.15972 −0.579862 0.814715i \(-0.696893\pi\)
−0.579862 + 0.814715i \(0.696893\pi\)
\(410\) 0 0
\(411\) 7454.98 0.894713
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 14155.8 1.67441
\(416\) 0 0
\(417\) −4966.09 −0.583190
\(418\) 0 0
\(419\) −16850.1 −1.96463 −0.982317 0.187224i \(-0.940051\pi\)
−0.982317 + 0.187224i \(0.940051\pi\)
\(420\) 0 0
\(421\) 1691.10 0.195770 0.0978849 0.995198i \(-0.468792\pi\)
0.0978849 + 0.995198i \(0.468792\pi\)
\(422\) 0 0
\(423\) −1935.73 −0.222503
\(424\) 0 0
\(425\) 1196.17 0.136524
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1515.78 −0.170589
\(430\) 0 0
\(431\) 6789.34 0.758773 0.379386 0.925238i \(-0.376135\pi\)
0.379386 + 0.925238i \(0.376135\pi\)
\(432\) 0 0
\(433\) 10386.6 1.15276 0.576382 0.817180i \(-0.304464\pi\)
0.576382 + 0.817180i \(0.304464\pi\)
\(434\) 0 0
\(435\) 2806.04 0.309286
\(436\) 0 0
\(437\) −5871.17 −0.642692
\(438\) 0 0
\(439\) 4212.26 0.457950 0.228975 0.973432i \(-0.426463\pi\)
0.228975 + 0.973432i \(0.426463\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1809.96 0.194117 0.0970585 0.995279i \(-0.469057\pi\)
0.0970585 + 0.995279i \(0.469057\pi\)
\(444\) 0 0
\(445\) 6818.57 0.726362
\(446\) 0 0
\(447\) −1050.57 −0.111164
\(448\) 0 0
\(449\) 1768.29 0.185859 0.0929297 0.995673i \(-0.470377\pi\)
0.0929297 + 0.995673i \(0.470377\pi\)
\(450\) 0 0
\(451\) 2088.71 0.218079
\(452\) 0 0
\(453\) 10014.4 1.03867
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4372.61 0.447575 0.223788 0.974638i \(-0.428158\pi\)
0.223788 + 0.974638i \(0.428158\pi\)
\(458\) 0 0
\(459\) 2815.75 0.286335
\(460\) 0 0
\(461\) −1164.34 −0.117633 −0.0588165 0.998269i \(-0.518733\pi\)
−0.0588165 + 0.998269i \(0.518733\pi\)
\(462\) 0 0
\(463\) 14893.9 1.49498 0.747491 0.664272i \(-0.231258\pi\)
0.747491 + 0.664272i \(0.231258\pi\)
\(464\) 0 0
\(465\) −2006.40 −0.200096
\(466\) 0 0
\(467\) −19160.3 −1.89857 −0.949285 0.314418i \(-0.898191\pi\)
−0.949285 + 0.314418i \(0.898191\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5231.02 0.511746
\(472\) 0 0
\(473\) −2040.05 −0.198312
\(474\) 0 0
\(475\) 980.616 0.0947237
\(476\) 0 0
\(477\) 4725.21 0.453569
\(478\) 0 0
\(479\) 9406.28 0.897253 0.448626 0.893719i \(-0.351913\pi\)
0.448626 + 0.893719i \(0.351913\pi\)
\(480\) 0 0
\(481\) 3205.10 0.303825
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15190.4 −1.42218
\(486\) 0 0
\(487\) −12460.8 −1.15945 −0.579725 0.814812i \(-0.696840\pi\)
−0.579725 + 0.814812i \(0.696840\pi\)
\(488\) 0 0
\(489\) 10294.7 0.952028
\(490\) 0 0
\(491\) −12868.0 −1.18274 −0.591369 0.806401i \(-0.701412\pi\)
−0.591369 + 0.806401i \(0.701412\pi\)
\(492\) 0 0
\(493\) −9154.76 −0.836328
\(494\) 0 0
\(495\) −638.087 −0.0579392
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13705.0 1.22950 0.614750 0.788722i \(-0.289257\pi\)
0.614750 + 0.788722i \(0.289257\pi\)
\(500\) 0 0
\(501\) 10143.2 0.904517
\(502\) 0 0
\(503\) −10126.1 −0.897616 −0.448808 0.893628i \(-0.648151\pi\)
−0.448808 + 0.893628i \(0.648151\pi\)
\(504\) 0 0
\(505\) 10571.6 0.931546
\(506\) 0 0
\(507\) −10706.7 −0.937870
\(508\) 0 0
\(509\) −6236.06 −0.543042 −0.271521 0.962432i \(-0.587527\pi\)
−0.271521 + 0.962432i \(0.587527\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2308.35 0.198667
\(514\) 0 0
\(515\) 2850.99 0.243941
\(516\) 0 0
\(517\) −1431.15 −0.121744
\(518\) 0 0
\(519\) 4023.00 0.340251
\(520\) 0 0
\(521\) 17016.8 1.43094 0.715468 0.698645i \(-0.246213\pi\)
0.715468 + 0.698645i \(0.246213\pi\)
\(522\) 0 0
\(523\) 5814.62 0.486148 0.243074 0.970008i \(-0.421844\pi\)
0.243074 + 0.970008i \(0.421844\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6545.92 0.541071
\(528\) 0 0
\(529\) −7450.98 −0.612393
\(530\) 0 0
\(531\) −3244.42 −0.265152
\(532\) 0 0
\(533\) 23835.8 1.93704
\(534\) 0 0
\(535\) −16372.8 −1.32310
\(536\) 0 0
\(537\) 3375.44 0.271250
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −10069.2 −0.800199 −0.400100 0.916472i \(-0.631025\pi\)
−0.400100 + 0.916472i \(0.631025\pi\)
\(542\) 0 0
\(543\) 10605.1 0.838137
\(544\) 0 0
\(545\) −10642.5 −0.836466
\(546\) 0 0
\(547\) 7437.51 0.581362 0.290681 0.956820i \(-0.406118\pi\)
0.290681 + 0.956820i \(0.406118\pi\)
\(548\) 0 0
\(549\) 7206.53 0.560232
\(550\) 0 0
\(551\) −7505.06 −0.580265
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1349.23 0.103192
\(556\) 0 0
\(557\) 21787.1 1.65736 0.828680 0.559723i \(-0.189092\pi\)
0.828680 + 0.559723i \(0.189092\pi\)
\(558\) 0 0
\(559\) −23280.5 −1.76147
\(560\) 0 0
\(561\) 2081.77 0.156671
\(562\) 0 0
\(563\) −2572.48 −0.192570 −0.0962851 0.995354i \(-0.530696\pi\)
−0.0962851 + 0.995354i \(0.530696\pi\)
\(564\) 0 0
\(565\) −10005.2 −0.744991
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17580.6 −1.29528 −0.647642 0.761945i \(-0.724245\pi\)
−0.647642 + 0.761945i \(0.724245\pi\)
\(570\) 0 0
\(571\) −7220.75 −0.529210 −0.264605 0.964357i \(-0.585242\pi\)
−0.264605 + 0.964357i \(0.585242\pi\)
\(572\) 0 0
\(573\) 7919.67 0.577398
\(574\) 0 0
\(575\) −787.679 −0.0571278
\(576\) 0 0
\(577\) 11155.1 0.804839 0.402419 0.915455i \(-0.368169\pi\)
0.402419 + 0.915455i \(0.368169\pi\)
\(578\) 0 0
\(579\) −3141.16 −0.225461
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3493.50 0.248175
\(584\) 0 0
\(585\) −7281.67 −0.514633
\(586\) 0 0
\(587\) 15216.2 1.06992 0.534958 0.844879i \(-0.320327\pi\)
0.534958 + 0.844879i \(0.320327\pi\)
\(588\) 0 0
\(589\) 5366.33 0.375409
\(590\) 0 0
\(591\) 13756.3 0.957462
\(592\) 0 0
\(593\) 3843.89 0.266188 0.133094 0.991103i \(-0.457509\pi\)
0.133094 + 0.991103i \(0.457509\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2492.23 0.170854
\(598\) 0 0
\(599\) −18747.0 −1.27876 −0.639382 0.768889i \(-0.720810\pi\)
−0.639382 + 0.768889i \(0.720810\pi\)
\(600\) 0 0
\(601\) −9864.63 −0.669529 −0.334764 0.942302i \(-0.608657\pi\)
−0.334764 + 0.942302i \(0.608657\pi\)
\(602\) 0 0
\(603\) 362.057 0.0244513
\(604\) 0 0
\(605\) 13710.1 0.921314
\(606\) 0 0
\(607\) −22292.8 −1.49067 −0.745336 0.666689i \(-0.767711\pi\)
−0.745336 + 0.666689i \(0.767711\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16331.9 −1.08137
\(612\) 0 0
\(613\) 6046.78 0.398413 0.199206 0.979958i \(-0.436164\pi\)
0.199206 + 0.979958i \(0.436164\pi\)
\(614\) 0 0
\(615\) 10034.0 0.657901
\(616\) 0 0
\(617\) −9383.68 −0.612273 −0.306137 0.951988i \(-0.599036\pi\)
−0.306137 + 0.951988i \(0.599036\pi\)
\(618\) 0 0
\(619\) 3989.50 0.259049 0.129525 0.991576i \(-0.458655\pi\)
0.129525 + 0.991576i \(0.458655\pi\)
\(620\) 0 0
\(621\) −1854.18 −0.119816
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −14059.7 −0.899821
\(626\) 0 0
\(627\) 1706.63 0.108702
\(628\) 0 0
\(629\) −4401.88 −0.279038
\(630\) 0 0
\(631\) −11434.0 −0.721363 −0.360681 0.932689i \(-0.617456\pi\)
−0.360681 + 0.932689i \(0.617456\pi\)
\(632\) 0 0
\(633\) −7890.24 −0.495432
\(634\) 0 0
\(635\) −17274.7 −1.07957
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2689.03 0.166473
\(640\) 0 0
\(641\) −15097.3 −0.930274 −0.465137 0.885239i \(-0.653995\pi\)
−0.465137 + 0.885239i \(0.653995\pi\)
\(642\) 0 0
\(643\) −4170.19 −0.255764 −0.127882 0.991789i \(-0.540818\pi\)
−0.127882 + 0.991789i \(0.540818\pi\)
\(644\) 0 0
\(645\) −9800.23 −0.598269
\(646\) 0 0
\(647\) 4563.88 0.277318 0.138659 0.990340i \(-0.455721\pi\)
0.138659 + 0.990340i \(0.455721\pi\)
\(648\) 0 0
\(649\) −2398.71 −0.145081
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3819.04 0.228868 0.114434 0.993431i \(-0.463495\pi\)
0.114434 + 0.993431i \(0.463495\pi\)
\(654\) 0 0
\(655\) 16178.9 0.965134
\(656\) 0 0
\(657\) 4654.13 0.276370
\(658\) 0 0
\(659\) 4326.02 0.255717 0.127859 0.991792i \(-0.459190\pi\)
0.127859 + 0.991792i \(0.459190\pi\)
\(660\) 0 0
\(661\) −29317.8 −1.72516 −0.862579 0.505923i \(-0.831152\pi\)
−0.862579 + 0.505923i \(0.831152\pi\)
\(662\) 0 0
\(663\) 23756.6 1.39160
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6028.43 0.349958
\(668\) 0 0
\(669\) −2591.96 −0.149792
\(670\) 0 0
\(671\) 5328.02 0.306536
\(672\) 0 0
\(673\) −5483.56 −0.314080 −0.157040 0.987592i \(-0.550195\pi\)
−0.157040 + 0.987592i \(0.550195\pi\)
\(674\) 0 0
\(675\) 309.689 0.0176591
\(676\) 0 0
\(677\) −12069.3 −0.685174 −0.342587 0.939486i \(-0.611303\pi\)
−0.342587 + 0.939486i \(0.611303\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12481.1 −0.702314
\(682\) 0 0
\(683\) −30796.7 −1.72533 −0.862667 0.505772i \(-0.831208\pi\)
−0.862667 + 0.505772i \(0.831208\pi\)
\(684\) 0 0
\(685\) 26477.7 1.47688
\(686\) 0 0
\(687\) 543.631 0.0301904
\(688\) 0 0
\(689\) 39866.9 2.20436
\(690\) 0 0
\(691\) 6501.96 0.357954 0.178977 0.983853i \(-0.442721\pi\)
0.178977 + 0.983853i \(0.442721\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17638.0 −0.962656
\(696\) 0 0
\(697\) −32736.1 −1.77901
\(698\) 0 0
\(699\) −6451.34 −0.349088
\(700\) 0 0
\(701\) −2235.98 −0.120473 −0.0602367 0.998184i \(-0.519186\pi\)
−0.0602367 + 0.998184i \(0.519186\pi\)
\(702\) 0 0
\(703\) −3608.66 −0.193603
\(704\) 0 0
\(705\) −6875.11 −0.367279
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 35564.5 1.88385 0.941926 0.335820i \(-0.109014\pi\)
0.941926 + 0.335820i \(0.109014\pi\)
\(710\) 0 0
\(711\) 11002.2 0.580330
\(712\) 0 0
\(713\) −4310.50 −0.226409
\(714\) 0 0
\(715\) −5383.57 −0.281586
\(716\) 0 0
\(717\) −20818.4 −1.08435
\(718\) 0 0
\(719\) 9924.15 0.514754 0.257377 0.966311i \(-0.417142\pi\)
0.257377 + 0.966311i \(0.417142\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 618.509 0.0318155
\(724\) 0 0
\(725\) −1006.88 −0.0515788
\(726\) 0 0
\(727\) −880.081 −0.0448974 −0.0224487 0.999748i \(-0.507146\pi\)
−0.0224487 + 0.999748i \(0.507146\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 31973.5 1.61776
\(732\) 0 0
\(733\) −17336.2 −0.873568 −0.436784 0.899566i \(-0.643883\pi\)
−0.436784 + 0.899566i \(0.643883\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 267.681 0.0133787
\(738\) 0 0
\(739\) 24586.4 1.22385 0.611924 0.790917i \(-0.290396\pi\)
0.611924 + 0.790917i \(0.290396\pi\)
\(740\) 0 0
\(741\) 19475.6 0.965527
\(742\) 0 0
\(743\) −14579.3 −0.719870 −0.359935 0.932977i \(-0.617201\pi\)
−0.359935 + 0.932977i \(0.617201\pi\)
\(744\) 0 0
\(745\) −3731.30 −0.183496
\(746\) 0 0
\(747\) −11957.0 −0.585652
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16086.0 −0.781604 −0.390802 0.920475i \(-0.627802\pi\)
−0.390802 + 0.920475i \(0.627802\pi\)
\(752\) 0 0
\(753\) 15035.8 0.727669
\(754\) 0 0
\(755\) 35568.0 1.71451
\(756\) 0 0
\(757\) −37017.3 −1.77730 −0.888651 0.458584i \(-0.848357\pi\)
−0.888651 + 0.458584i \(0.848357\pi\)
\(758\) 0 0
\(759\) −1370.85 −0.0655584
\(760\) 0 0
\(761\) 24606.5 1.17212 0.586060 0.810267i \(-0.300678\pi\)
0.586060 + 0.810267i \(0.300678\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 10000.6 0.472646
\(766\) 0 0
\(767\) −27373.4 −1.28865
\(768\) 0 0
\(769\) −12715.6 −0.596275 −0.298137 0.954523i \(-0.596365\pi\)
−0.298137 + 0.954523i \(0.596365\pi\)
\(770\) 0 0
\(771\) 17589.2 0.821610
\(772\) 0 0
\(773\) 3174.23 0.147696 0.0738480 0.997270i \(-0.476472\pi\)
0.0738480 + 0.997270i \(0.476472\pi\)
\(774\) 0 0
\(775\) 719.949 0.0333695
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −26837.0 −1.23432
\(780\) 0 0
\(781\) 1988.08 0.0910874
\(782\) 0 0
\(783\) −2370.18 −0.108178
\(784\) 0 0
\(785\) 18578.9 0.844726
\(786\) 0 0
\(787\) 15569.9 0.705218 0.352609 0.935771i \(-0.385295\pi\)
0.352609 + 0.935771i \(0.385295\pi\)
\(788\) 0 0
\(789\) −16918.7 −0.763398
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 60801.9 2.72275
\(794\) 0 0
\(795\) 16782.5 0.748695
\(796\) 0 0
\(797\) −31514.5 −1.40063 −0.700314 0.713835i \(-0.746957\pi\)
−0.700314 + 0.713835i \(0.746957\pi\)
\(798\) 0 0
\(799\) 22430.2 0.993146
\(800\) 0 0
\(801\) −5759.44 −0.254057
\(802\) 0 0
\(803\) 3440.95 0.151219
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8929.90 0.389526
\(808\) 0 0
\(809\) 11029.1 0.479310 0.239655 0.970858i \(-0.422966\pi\)
0.239655 + 0.970858i \(0.422966\pi\)
\(810\) 0 0
\(811\) 20830.5 0.901920 0.450960 0.892544i \(-0.351082\pi\)
0.450960 + 0.892544i \(0.351082\pi\)
\(812\) 0 0
\(813\) −8422.00 −0.363312
\(814\) 0 0
\(815\) 36563.4 1.57149
\(816\) 0 0
\(817\) 26211.8 1.12244
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9349.06 −0.397423 −0.198712 0.980058i \(-0.563676\pi\)
−0.198712 + 0.980058i \(0.563676\pi\)
\(822\) 0 0
\(823\) 32890.6 1.39307 0.696533 0.717525i \(-0.254725\pi\)
0.696533 + 0.717525i \(0.254725\pi\)
\(824\) 0 0
\(825\) 228.963 0.00966238
\(826\) 0 0
\(827\) 13081.2 0.550033 0.275016 0.961440i \(-0.411317\pi\)
0.275016 + 0.961440i \(0.411317\pi\)
\(828\) 0 0
\(829\) 28791.2 1.20622 0.603112 0.797657i \(-0.293927\pi\)
0.603112 + 0.797657i \(0.293927\pi\)
\(830\) 0 0
\(831\) 5755.17 0.240246
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 36025.3 1.49306
\(836\) 0 0
\(837\) 1694.74 0.0699868
\(838\) 0 0
\(839\) 36766.8 1.51291 0.756455 0.654046i \(-0.226930\pi\)
0.756455 + 0.654046i \(0.226930\pi\)
\(840\) 0 0
\(841\) −16682.9 −0.684034
\(842\) 0 0
\(843\) −15628.5 −0.638523
\(844\) 0 0
\(845\) −38026.7 −1.54812
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 22490.1 0.909138
\(850\) 0 0
\(851\) 2898.65 0.116762
\(852\) 0 0
\(853\) 5899.55 0.236808 0.118404 0.992966i \(-0.462222\pi\)
0.118404 + 0.992966i \(0.462222\pi\)
\(854\) 0 0
\(855\) 8198.51 0.327934
\(856\) 0 0
\(857\) 42277.0 1.68513 0.842564 0.538596i \(-0.181045\pi\)
0.842564 + 0.538596i \(0.181045\pi\)
\(858\) 0 0
\(859\) 6343.46 0.251963 0.125981 0.992033i \(-0.459792\pi\)
0.125981 + 0.992033i \(0.459792\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6929.78 −0.273340 −0.136670 0.990617i \(-0.543640\pi\)
−0.136670 + 0.990617i \(0.543640\pi\)
\(864\) 0 0
\(865\) 14288.4 0.561643
\(866\) 0 0
\(867\) −17888.3 −0.700715
\(868\) 0 0
\(869\) 8134.27 0.317533
\(870\) 0 0
\(871\) 3054.69 0.118834
\(872\) 0 0
\(873\) 12830.9 0.497433
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3287.88 0.126595 0.0632976 0.997995i \(-0.479838\pi\)
0.0632976 + 0.997995i \(0.479838\pi\)
\(878\) 0 0
\(879\) 10076.8 0.386670
\(880\) 0 0
\(881\) −46875.9 −1.79261 −0.896304 0.443439i \(-0.853758\pi\)
−0.896304 + 0.443439i \(0.853758\pi\)
\(882\) 0 0
\(883\) −42479.4 −1.61897 −0.809483 0.587144i \(-0.800252\pi\)
−0.809483 + 0.587144i \(0.800252\pi\)
\(884\) 0 0
\(885\) −11523.2 −0.437680
\(886\) 0 0
\(887\) −3680.15 −0.139309 −0.0696547 0.997571i \(-0.522190\pi\)
−0.0696547 + 0.997571i \(0.522190\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 538.973 0.0202652
\(892\) 0 0
\(893\) 18388.2 0.689069
\(894\) 0 0
\(895\) 11988.5 0.447745
\(896\) 0 0
\(897\) −15643.8 −0.582309
\(898\) 0 0
\(899\) −5510.07 −0.204417
\(900\) 0 0
\(901\) −54753.1 −2.02452
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 37666.0 1.38349
\(906\) 0 0
\(907\) 7102.18 0.260005 0.130002 0.991514i \(-0.458502\pi\)
0.130002 + 0.991514i \(0.458502\pi\)
\(908\) 0 0
\(909\) −8929.53 −0.325824
\(910\) 0 0
\(911\) −38119.0 −1.38632 −0.693161 0.720783i \(-0.743782\pi\)
−0.693161 + 0.720783i \(0.743782\pi\)
\(912\) 0 0
\(913\) −8840.17 −0.320446
\(914\) 0 0
\(915\) 25595.3 0.924760
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −17190.6 −0.617045 −0.308522 0.951217i \(-0.599834\pi\)
−0.308522 + 0.951217i \(0.599834\pi\)
\(920\) 0 0
\(921\) −21992.8 −0.786847
\(922\) 0 0
\(923\) 22687.5 0.809065
\(924\) 0 0
\(925\) −484.139 −0.0172091
\(926\) 0 0
\(927\) −2408.15 −0.0853225
\(928\) 0 0
\(929\) 32256.5 1.13918 0.569591 0.821928i \(-0.307101\pi\)
0.569591 + 0.821928i \(0.307101\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −6115.59 −0.214593
\(934\) 0 0
\(935\) 7393.80 0.258613
\(936\) 0 0
\(937\) 26213.6 0.913940 0.456970 0.889482i \(-0.348935\pi\)
0.456970 + 0.889482i \(0.348935\pi\)
\(938\) 0 0
\(939\) −12416.6 −0.431524
\(940\) 0 0
\(941\) 34240.1 1.18618 0.593089 0.805137i \(-0.297908\pi\)
0.593089 + 0.805137i \(0.297908\pi\)
\(942\) 0 0
\(943\) 21556.8 0.744418
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36004.5 −1.23547 −0.617735 0.786386i \(-0.711950\pi\)
−0.617735 + 0.786386i \(0.711950\pi\)
\(948\) 0 0
\(949\) 39267.2 1.34317
\(950\) 0 0
\(951\) 22656.8 0.772551
\(952\) 0 0
\(953\) −29488.1 −1.00232 −0.501161 0.865354i \(-0.667093\pi\)
−0.501161 + 0.865354i \(0.667093\pi\)
\(954\) 0 0
\(955\) 28128.2 0.953095
\(956\) 0 0
\(957\) −1752.35 −0.0591905
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25851.1 −0.867750
\(962\) 0 0
\(963\) 13829.6 0.462776
\(964\) 0 0
\(965\) −11156.4 −0.372163
\(966\) 0 0
\(967\) 56009.0 1.86260 0.931298 0.364259i \(-0.118678\pi\)
0.931298 + 0.364259i \(0.118678\pi\)
\(968\) 0 0
\(969\) −26747.8 −0.886753
\(970\) 0 0
\(971\) −13576.9 −0.448715 −0.224358 0.974507i \(-0.572028\pi\)
−0.224358 + 0.974507i \(0.572028\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2612.86 0.0858241
\(976\) 0 0
\(977\) −31775.1 −1.04051 −0.520254 0.854011i \(-0.674163\pi\)
−0.520254 + 0.854011i \(0.674163\pi\)
\(978\) 0 0
\(979\) −4258.14 −0.139010
\(980\) 0 0
\(981\) 8989.38 0.292568
\(982\) 0 0
\(983\) −32755.4 −1.06280 −0.531401 0.847120i \(-0.678334\pi\)
−0.531401 + 0.847120i \(0.678334\pi\)
\(984\) 0 0
\(985\) 48858.2 1.58046
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21054.6 −0.676944
\(990\) 0 0
\(991\) 40797.0 1.30773 0.653865 0.756611i \(-0.273146\pi\)
0.653865 + 0.756611i \(0.273146\pi\)
\(992\) 0 0
\(993\) 16733.1 0.534752
\(994\) 0 0
\(995\) 8851.60 0.282025
\(996\) 0 0
\(997\) −17370.5 −0.551784 −0.275892 0.961189i \(-0.588973\pi\)
−0.275892 + 0.961189i \(0.588973\pi\)
\(998\) 0 0
\(999\) −1139.65 −0.0360931
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2352.4.a.cl.1.2 4
4.3 odd 2 588.4.a.k.1.2 yes 4
7.6 odd 2 2352.4.a.cq.1.3 4
12.11 even 2 1764.4.a.ba.1.3 4
28.3 even 6 588.4.i.l.373.2 8
28.11 odd 6 588.4.i.k.373.3 8
28.19 even 6 588.4.i.l.361.2 8
28.23 odd 6 588.4.i.k.361.3 8
28.27 even 2 588.4.a.j.1.3 4
84.11 even 6 1764.4.k.bd.1549.2 8
84.23 even 6 1764.4.k.bd.361.2 8
84.47 odd 6 1764.4.k.bb.361.3 8
84.59 odd 6 1764.4.k.bb.1549.3 8
84.83 odd 2 1764.4.a.bc.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.4.a.j.1.3 4 28.27 even 2
588.4.a.k.1.2 yes 4 4.3 odd 2
588.4.i.k.361.3 8 28.23 odd 6
588.4.i.k.373.3 8 28.11 odd 6
588.4.i.l.361.2 8 28.19 even 6
588.4.i.l.373.2 8 28.3 even 6
1764.4.a.ba.1.3 4 12.11 even 2
1764.4.a.bc.1.2 4 84.83 odd 2
1764.4.k.bb.361.3 8 84.47 odd 6
1764.4.k.bb.1549.3 8 84.59 odd 6
1764.4.k.bd.361.2 8 84.23 even 6
1764.4.k.bd.1549.2 8 84.11 even 6
2352.4.a.cl.1.2 4 1.1 even 1 trivial
2352.4.a.cq.1.3 4 7.6 odd 2