Properties

Label 2352.4.a.ci
Level $2352$
Weight $4$
Character orbit 2352.a
Self dual yes
Analytic conductor $138.772$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2352.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(138.772492334\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.57516.1
Defining polynomial: \(x^{3} - x^{2} - 24 x + 6\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + ( 4 + \beta_{2} ) q^{5} + 9 q^{9} +O(q^{10})\) \( q + 3 q^{3} + ( 4 + \beta_{2} ) q^{5} + 9 q^{9} + ( -11 + \beta_{1} + 2 \beta_{2} ) q^{11} + ( 20 + \beta_{1} - 2 \beta_{2} ) q^{13} + ( 12 + 3 \beta_{2} ) q^{15} + ( 17 + \beta_{1} + 3 \beta_{2} ) q^{17} + ( 67 + 2 \beta_{1} - \beta_{2} ) q^{19} + ( -73 + 7 \beta_{1} - 3 \beta_{2} ) q^{23} + ( 46 - 7 \beta_{1} + 8 \beta_{2} ) q^{25} + 27 q^{27} + ( 21 - 5 \beta_{1} + 10 \beta_{2} ) q^{29} + ( 34 - 5 \beta_{1} + 7 \beta_{2} ) q^{31} + ( -33 + 3 \beta_{1} + 6 \beta_{2} ) q^{33} + ( 86 + 5 \beta_{1} - 4 \beta_{2} ) q^{37} + ( 60 + 3 \beta_{1} - 6 \beta_{2} ) q^{39} + ( 78 - 4 \beta_{1} - 10 \beta_{2} ) q^{41} + ( -125 + 18 \beta_{1} - 15 \beta_{2} ) q^{43} + ( 36 + 9 \beta_{2} ) q^{45} + ( 71 + 25 \beta_{1} + 3 \beta_{2} ) q^{47} + ( 51 + 3 \beta_{1} + 9 \beta_{2} ) q^{51} + ( 134 - 20 \beta_{1} + 9 \beta_{2} ) q^{53} + ( 339 - 11 \beta_{1} - 14 \beta_{2} ) q^{55} + ( 201 + 6 \beta_{1} - 3 \beta_{2} ) q^{57} + ( -368 - 10 \beta_{1} + 39 \beta_{2} ) q^{59} + ( -10 - 20 \beta_{1} + 40 \beta_{2} ) q^{61} + ( -157 + 17 \beta_{1} + \beta_{2} ) q^{65} + ( 199 - 16 \beta_{1} - 31 \beta_{2} ) q^{67} + ( -219 + 21 \beta_{1} - 9 \beta_{2} ) q^{69} + ( -99 - 33 \beta_{1} + 21 \beta_{2} ) q^{71} + ( 332 - 31 \beta_{1} + 8 \beta_{2} ) q^{73} + ( 138 - 21 \beta_{1} + 24 \beta_{2} ) q^{75} + ( -302 - 3 \beta_{1} - 45 \beta_{2} ) q^{79} + 81 q^{81} + ( -162 - 6 \beta_{1} + 33 \beta_{2} ) q^{83} + ( 606 - 18 \beta_{1} + 18 \beta_{2} ) q^{85} + ( 63 - 15 \beta_{1} + 30 \beta_{2} ) q^{87} + ( 580 + 48 \beta_{1} - 26 \beta_{2} ) q^{89} + ( 102 - 15 \beta_{1} + 21 \beta_{2} ) q^{93} + ( 259 + 13 \beta_{1} + 41 \beta_{2} ) q^{95} + ( 23 - \beta_{1} + 50 \beta_{2} ) q^{97} + ( -99 + 9 \beta_{1} + 18 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + 9q^{3} + 11q^{5} + 27q^{9} + O(q^{10}) \) \( 3q + 9q^{3} + 11q^{5} + 27q^{9} - 35q^{11} + 62q^{13} + 33q^{15} + 48q^{17} + 202q^{19} - 216q^{23} + 130q^{25} + 81q^{27} + 53q^{29} + 95q^{31} - 105q^{33} + 262q^{37} + 186q^{39} + 244q^{41} - 360q^{43} + 99q^{45} + 210q^{47} + 144q^{51} + 393q^{53} + 1031q^{55} + 606q^{57} - 1143q^{59} - 70q^{61} - 472q^{65} + 628q^{67} - 648q^{69} - 318q^{71} + 988q^{73} + 390q^{75} - 861q^{79} + 243q^{81} - 519q^{83} + 1800q^{85} + 159q^{87} + 1766q^{89} + 285q^{93} + 736q^{95} + 19q^{97} - 315q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 24 x + 6\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} + 2 \nu - 17 \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 2 \nu - 16 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{2} + \beta_{1} + 1\)\()/4\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{2} + \beta_{1} + 33\)\()/2\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.248072
5.30829
−4.55637
0 3.00000 0 −12.4346 0 0 0 9.00000 0
1.2 0 3.00000 0 5.56140 0 0 0 9.00000 0
1.3 0 3.00000 0 17.8732 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.4.a.ci 3
4.b odd 2 1 147.4.a.l 3
7.b odd 2 1 2352.4.a.cg 3
7.c even 3 2 336.4.q.k 6
12.b even 2 1 441.4.a.s 3
28.d even 2 1 147.4.a.m 3
28.f even 6 2 147.4.e.n 6
28.g odd 6 2 21.4.e.b 6
84.h odd 2 1 441.4.a.t 3
84.j odd 6 2 441.4.e.w 6
84.n even 6 2 63.4.e.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.e.b 6 28.g odd 6 2
63.4.e.c 6 84.n even 6 2
147.4.a.l 3 4.b odd 2 1
147.4.a.m 3 28.d even 2 1
147.4.e.n 6 28.f even 6 2
336.4.q.k 6 7.c even 3 2
441.4.a.s 3 12.b even 2 1
441.4.a.t 3 84.h odd 2 1
441.4.e.w 6 84.j odd 6 2
2352.4.a.cg 3 7.b odd 2 1
2352.4.a.ci 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2352))\):

\( T_{5}^{3} - 11 T_{5}^{2} - 192 T_{5} + 1236 \)
\( T_{11}^{3} + 35 T_{11}^{2} - 1368 T_{11} + 9564 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \)
$3$ \( ( -3 + T )^{3} \)
$5$ \( 1236 - 192 T - 11 T^{2} + T^{3} \)
$7$ \( T^{3} \)
$11$ \( 9564 - 1368 T + 35 T^{2} + T^{3} \)
$13$ \( 18452 + 425 T - 62 T^{2} + T^{3} \)
$17$ \( 112896 - 2400 T - 48 T^{2} + T^{3} \)
$19$ \( -233804 + 12281 T - 202 T^{2} + T^{3} \)
$23$ \( -1580544 - 672 T + 216 T^{2} + T^{3} \)
$29$ \( -824976 - 20472 T - 53 T^{2} + T^{3} \)
$31$ \( 11823 - 10001 T - 95 T^{2} + T^{3} \)
$37$ \( -49152 + 14089 T - 262 T^{2} + T^{3} \)
$41$ \( -300384 - 18780 T - 244 T^{2} + T^{3} \)
$43$ \( -18269746 - 72363 T + 360 T^{2} + T^{3} \)
$47$ \( -5119128 - 246516 T - 210 T^{2} + T^{3} \)
$53$ \( 33169392 - 80736 T - 393 T^{2} + T^{3} \)
$59$ \( -100468944 + 133104 T + 1143 T^{2} + T^{3} \)
$61$ \( -84631000 - 340900 T + 70 T^{2} + T^{3} \)
$67$ \( -27993002 - 304963 T - 628 T^{2} + T^{3} \)
$71$ \( 28535976 - 330804 T + 318 T^{2} + T^{3} \)
$73$ \( 143207118 - 4355 T - 988 T^{2} + T^{3} \)
$79$ \( -193956337 - 257901 T + 861 T^{2} + T^{3} \)
$83$ \( -47916036 - 131616 T + 519 T^{2} + T^{3} \)
$89$ \( 13004544 + 277920 T - 1766 T^{2} + T^{3} \)
$97$ \( 44776452 - 569600 T - 19 T^{2} + T^{3} \)
show more
show less