Properties

Label 2352.4.a.cg
Level $2352$
Weight $4$
Character orbit 2352.a
Self dual yes
Analytic conductor $138.772$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2352,4,Mod(1,2352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2352.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-9,0,-11,0,0,0,27,0,-35] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(138.772492334\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.57516.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 24x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta_{2} - 4) q^{5} + 9 q^{9} + (2 \beta_{2} + \beta_1 - 11) q^{11} + (2 \beta_{2} - \beta_1 - 20) q^{13} + (3 \beta_{2} + 12) q^{15} + ( - 3 \beta_{2} - \beta_1 - 17) q^{17} + (\beta_{2} - 2 \beta_1 - 67) q^{19}+ \cdots + (18 \beta_{2} + 9 \beta_1 - 99) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} - 11 q^{5} + 27 q^{9} - 35 q^{11} - 62 q^{13} + 33 q^{15} - 48 q^{17} - 202 q^{19} - 216 q^{23} + 130 q^{25} - 81 q^{27} + 53 q^{29} - 95 q^{31} + 105 q^{33} + 262 q^{37} + 186 q^{39} - 244 q^{41}+ \cdots - 315 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 24x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + 2\nu - 17 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 33 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.55637
5.30829
0.248072
0 −3.00000 0 −17.8732 0 0 0 9.00000 0
1.2 0 −3.00000 0 −5.56140 0 0 0 9.00000 0
1.3 0 −3.00000 0 12.4346 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.4.a.cg 3
4.b odd 2 1 147.4.a.m 3
7.b odd 2 1 2352.4.a.ci 3
7.d odd 6 2 336.4.q.k 6
12.b even 2 1 441.4.a.t 3
28.d even 2 1 147.4.a.l 3
28.f even 6 2 21.4.e.b 6
28.g odd 6 2 147.4.e.n 6
84.h odd 2 1 441.4.a.s 3
84.j odd 6 2 63.4.e.c 6
84.n even 6 2 441.4.e.w 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.e.b 6 28.f even 6 2
63.4.e.c 6 84.j odd 6 2
147.4.a.l 3 28.d even 2 1
147.4.a.m 3 4.b odd 2 1
147.4.e.n 6 28.g odd 6 2
336.4.q.k 6 7.d odd 6 2
441.4.a.s 3 84.h odd 2 1
441.4.a.t 3 12.b even 2 1
441.4.e.w 6 84.n even 6 2
2352.4.a.cg 3 1.a even 1 1 trivial
2352.4.a.ci 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2352))\):

\( T_{5}^{3} + 11T_{5}^{2} - 192T_{5} - 1236 \) Copy content Toggle raw display
\( T_{11}^{3} + 35T_{11}^{2} - 1368T_{11} + 9564 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 11 T^{2} + \cdots - 1236 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 35 T^{2} + \cdots + 9564 \) Copy content Toggle raw display
$13$ \( T^{3} + 62 T^{2} + \cdots - 18452 \) Copy content Toggle raw display
$17$ \( T^{3} + 48 T^{2} + \cdots - 112896 \) Copy content Toggle raw display
$19$ \( T^{3} + 202 T^{2} + \cdots + 233804 \) Copy content Toggle raw display
$23$ \( T^{3} + 216 T^{2} + \cdots - 1580544 \) Copy content Toggle raw display
$29$ \( T^{3} - 53 T^{2} + \cdots - 824976 \) Copy content Toggle raw display
$31$ \( T^{3} + 95 T^{2} + \cdots - 11823 \) Copy content Toggle raw display
$37$ \( T^{3} - 262 T^{2} + \cdots - 49152 \) Copy content Toggle raw display
$41$ \( T^{3} + 244 T^{2} + \cdots + 300384 \) Copy content Toggle raw display
$43$ \( T^{3} + 360 T^{2} + \cdots - 18269746 \) Copy content Toggle raw display
$47$ \( T^{3} + 210 T^{2} + \cdots + 5119128 \) Copy content Toggle raw display
$53$ \( T^{3} - 393 T^{2} + \cdots + 33169392 \) Copy content Toggle raw display
$59$ \( T^{3} - 1143 T^{2} + \cdots + 100468944 \) Copy content Toggle raw display
$61$ \( T^{3} - 70 T^{2} + \cdots + 84631000 \) Copy content Toggle raw display
$67$ \( T^{3} - 628 T^{2} + \cdots - 27993002 \) Copy content Toggle raw display
$71$ \( T^{3} + 318 T^{2} + \cdots + 28535976 \) Copy content Toggle raw display
$73$ \( T^{3} + 988 T^{2} + \cdots - 143207118 \) Copy content Toggle raw display
$79$ \( T^{3} + 861 T^{2} + \cdots - 193956337 \) Copy content Toggle raw display
$83$ \( T^{3} - 519 T^{2} + \cdots + 47916036 \) Copy content Toggle raw display
$89$ \( T^{3} + 1766 T^{2} + \cdots - 13004544 \) Copy content Toggle raw display
$97$ \( T^{3} + 19 T^{2} + \cdots - 44776452 \) Copy content Toggle raw display
show more
show less