Properties

Label 2352.2.q.u.961.1
Level 2352
Weight 2
Character 2352.961
Analytic conductor 18.781
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2352.961
Dual form 2352.2.q.u.1537.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{5} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{5} +(-0.500000 + 0.866025i) q^{9} +(2.50000 + 4.33013i) q^{11} +1.00000 q^{15} +(-2.00000 - 3.46410i) q^{17} +(-4.00000 + 6.92820i) q^{19} +(-2.00000 + 3.46410i) q^{23} +(2.00000 + 3.46410i) q^{25} -1.00000 q^{27} -5.00000 q^{29} +(-1.50000 - 2.59808i) q^{31} +(-2.50000 + 4.33013i) q^{33} +(2.00000 - 3.46410i) q^{37} -2.00000 q^{43} +(0.500000 + 0.866025i) q^{45} +(3.00000 - 5.19615i) q^{47} +(2.00000 - 3.46410i) q^{51} +(4.50000 + 7.79423i) q^{53} +5.00000 q^{55} -8.00000 q^{57} +(5.50000 + 9.52628i) q^{59} +(-3.00000 + 5.19615i) q^{61} +(-1.00000 - 1.73205i) q^{67} -4.00000 q^{69} -2.00000 q^{71} +(5.00000 + 8.66025i) q^{73} +(-2.00000 + 3.46410i) q^{75} +(1.50000 - 2.59808i) q^{79} +(-0.500000 - 0.866025i) q^{81} -7.00000 q^{83} -4.00000 q^{85} +(-2.50000 - 4.33013i) q^{87} +(-3.00000 + 5.19615i) q^{89} +(1.50000 - 2.59808i) q^{93} +(4.00000 + 6.92820i) q^{95} -7.00000 q^{97} -5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{3} + q^{5} - q^{9} + O(q^{10}) \) \( 2q + q^{3} + q^{5} - q^{9} + 5q^{11} + 2q^{15} - 4q^{17} - 8q^{19} - 4q^{23} + 4q^{25} - 2q^{27} - 10q^{29} - 3q^{31} - 5q^{33} + 4q^{37} - 4q^{43} + q^{45} + 6q^{47} + 4q^{51} + 9q^{53} + 10q^{55} - 16q^{57} + 11q^{59} - 6q^{61} - 2q^{67} - 8q^{69} - 4q^{71} + 10q^{73} - 4q^{75} + 3q^{79} - q^{81} - 14q^{83} - 8q^{85} - 5q^{87} - 6q^{89} + 3q^{93} + 8q^{95} - 14q^{97} - 10q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i −0.732294 0.680989i \(-0.761550\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.50000 + 4.33013i 0.753778 + 1.30558i 0.945979 + 0.324227i \(0.105104\pi\)
−0.192201 + 0.981356i \(0.561563\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −2.00000 3.46410i −0.485071 0.840168i 0.514782 0.857321i \(-0.327873\pi\)
−0.999853 + 0.0171533i \(0.994540\pi\)
\(18\) 0 0
\(19\) −4.00000 + 6.92820i −0.917663 + 1.58944i −0.114708 + 0.993399i \(0.536593\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) −1.50000 2.59808i −0.269408 0.466628i 0.699301 0.714827i \(-0.253495\pi\)
−0.968709 + 0.248199i \(0.920161\pi\)
\(32\) 0 0
\(33\) −2.50000 + 4.33013i −0.435194 + 0.753778i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 3.46410i 0.328798 0.569495i −0.653476 0.756948i \(-0.726690\pi\)
0.982274 + 0.187453i \(0.0600231\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) 0 0
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.00000 3.46410i 0.280056 0.485071i
\(52\) 0 0
\(53\) 4.50000 + 7.79423i 0.618123 + 1.07062i 0.989828 + 0.142269i \(0.0454398\pi\)
−0.371706 + 0.928351i \(0.621227\pi\)
\(54\) 0 0
\(55\) 5.00000 0.674200
\(56\) 0 0
\(57\) −8.00000 −1.05963
\(58\) 0 0
\(59\) 5.50000 + 9.52628i 0.716039 + 1.24022i 0.962557 + 0.271078i \(0.0873801\pi\)
−0.246518 + 0.969138i \(0.579287\pi\)
\(60\) 0 0
\(61\) −3.00000 + 5.19615i −0.384111 + 0.665299i −0.991645 0.128994i \(-0.958825\pi\)
0.607535 + 0.794293i \(0.292159\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.00000 1.73205i −0.122169 0.211604i 0.798454 0.602056i \(-0.205652\pi\)
−0.920623 + 0.390453i \(0.872318\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 5.00000 + 8.66025i 0.585206 + 1.01361i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) −2.00000 + 3.46410i −0.230940 + 0.400000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.50000 2.59808i 0.168763 0.292306i −0.769222 0.638982i \(-0.779356\pi\)
0.937985 + 0.346675i \(0.112689\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −7.00000 −0.768350 −0.384175 0.923260i \(-0.625514\pi\)
−0.384175 + 0.923260i \(0.625514\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) −2.50000 4.33013i −0.268028 0.464238i
\(88\) 0 0
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.50000 2.59808i 0.155543 0.269408i
\(94\) 0 0
\(95\) 4.00000 + 6.92820i 0.410391 + 0.710819i
\(96\) 0 0
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 0 0
\(99\) −5.00000 −0.502519
\(100\) 0 0
\(101\) 5.00000 + 8.66025i 0.497519 + 0.861727i 0.999996 0.00286291i \(-0.000911295\pi\)
−0.502477 + 0.864590i \(0.667578\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.50000 2.59808i 0.145010 0.251166i −0.784366 0.620298i \(-0.787012\pi\)
0.929377 + 0.369132i \(0.120345\pi\)
\(108\) 0 0
\(109\) 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i \(-0.136131\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 0 0
\(115\) 2.00000 + 3.46410i 0.186501 + 0.323029i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 + 12.1244i −0.636364 + 1.10221i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −9.00000 −0.798621 −0.399310 0.916816i \(-0.630750\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(128\) 0 0
\(129\) −1.00000 1.73205i −0.0880451 0.152499i
\(130\) 0 0
\(131\) −0.500000 + 0.866025i −0.0436852 + 0.0756650i −0.887041 0.461690i \(-0.847243\pi\)
0.843356 + 0.537355i \(0.180577\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.500000 + 0.866025i −0.0430331 + 0.0745356i
\(136\) 0 0
\(137\) 1.00000 + 1.73205i 0.0854358 + 0.147979i 0.905577 0.424182i \(-0.139438\pi\)
−0.820141 + 0.572161i \(0.806105\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −2.50000 + 4.33013i −0.207614 + 0.359597i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.00000 15.5885i 0.737309 1.27706i −0.216394 0.976306i \(-0.569430\pi\)
0.953703 0.300750i \(-0.0972370\pi\)
\(150\) 0 0
\(151\) 9.50000 + 16.4545i 0.773099 + 1.33905i 0.935857 + 0.352381i \(0.114628\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 4.00000 0.323381
\(154\) 0 0
\(155\) −3.00000 −0.240966
\(156\) 0 0
\(157\) −2.00000 3.46410i −0.159617 0.276465i 0.775113 0.631822i \(-0.217693\pi\)
−0.934731 + 0.355357i \(0.884359\pi\)
\(158\) 0 0
\(159\) −4.50000 + 7.79423i −0.356873 + 0.618123i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 0 0
\(165\) 2.50000 + 4.33013i 0.194625 + 0.337100i
\(166\) 0 0
\(167\) −14.0000 −1.08335 −0.541676 0.840587i \(-0.682210\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −4.00000 6.92820i −0.305888 0.529813i
\(172\) 0 0
\(173\) 11.0000 19.0526i 0.836315 1.44854i −0.0566411 0.998395i \(-0.518039\pi\)
0.892956 0.450145i \(-0.148628\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.50000 + 9.52628i −0.413405 + 0.716039i
\(178\) 0 0
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) −6.00000 −0.443533
\(184\) 0 0
\(185\) −2.00000 3.46410i −0.147043 0.254686i
\(186\) 0 0
\(187\) 10.0000 17.3205i 0.731272 1.26660i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 20.7846i 0.868290 1.50392i 0.00454614 0.999990i \(-0.498553\pi\)
0.863743 0.503932i \(-0.168114\pi\)
\(192\) 0 0
\(193\) −2.50000 4.33013i −0.179954 0.311689i 0.761911 0.647682i \(-0.224262\pi\)
−0.941865 + 0.335993i \(0.890928\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 2.00000 + 3.46410i 0.141776 + 0.245564i 0.928166 0.372168i \(-0.121385\pi\)
−0.786389 + 0.617731i \(0.788052\pi\)
\(200\) 0 0
\(201\) 1.00000 1.73205i 0.0705346 0.122169i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.00000 3.46410i −0.139010 0.240772i
\(208\) 0 0
\(209\) −40.0000 −2.76686
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) 0 0
\(213\) −1.00000 1.73205i −0.0685189 0.118678i
\(214\) 0 0
\(215\) −1.00000 + 1.73205i −0.0681994 + 0.118125i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −5.00000 + 8.66025i −0.337869 + 0.585206i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.00000 −0.468755 −0.234377 0.972146i \(-0.575305\pi\)
−0.234377 + 0.972146i \(0.575305\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) 0 0
\(227\) −1.50000 2.59808i −0.0995585 0.172440i 0.811943 0.583736i \(-0.198410\pi\)
−0.911502 + 0.411296i \(0.865076\pi\)
\(228\) 0 0
\(229\) −10.0000 + 17.3205i −0.660819 + 1.14457i 0.319582 + 0.947559i \(0.396457\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.00000 3.46410i 0.131024 0.226941i −0.793047 0.609160i \(-0.791507\pi\)
0.924072 + 0.382219i \(0.124840\pi\)
\(234\) 0 0
\(235\) −3.00000 5.19615i −0.195698 0.338960i
\(236\) 0 0
\(237\) 3.00000 0.194871
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −12.5000 21.6506i −0.805196 1.39464i −0.916159 0.400815i \(-0.868727\pi\)
0.110963 0.993825i \(-0.464606\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −3.50000 6.06218i −0.221803 0.384175i
\(250\) 0 0
\(251\) 21.0000 1.32551 0.662754 0.748837i \(-0.269387\pi\)
0.662754 + 0.748837i \(0.269387\pi\)
\(252\) 0 0
\(253\) −20.0000 −1.25739
\(254\) 0 0
\(255\) −2.00000 3.46410i −0.125245 0.216930i
\(256\) 0 0
\(257\) −3.00000 + 5.19615i −0.187135 + 0.324127i −0.944294 0.329104i \(-0.893253\pi\)
0.757159 + 0.653231i \(0.226587\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.50000 4.33013i 0.154746 0.268028i
\(262\) 0 0
\(263\) −15.0000 25.9808i −0.924940 1.60204i −0.791658 0.610964i \(-0.790782\pi\)
−0.133281 0.991078i \(-0.542551\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 15.5000 + 26.8468i 0.945052 + 1.63688i 0.755648 + 0.654978i \(0.227322\pi\)
0.189404 + 0.981899i \(0.439344\pi\)
\(270\) 0 0
\(271\) −7.50000 + 12.9904i −0.455593 + 0.789109i −0.998722 0.0505395i \(-0.983906\pi\)
0.543130 + 0.839649i \(0.317239\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.0000 + 17.3205i −0.603023 + 1.04447i
\(276\) 0 0
\(277\) 8.00000 + 13.8564i 0.480673 + 0.832551i 0.999754 0.0221745i \(-0.00705893\pi\)
−0.519081 + 0.854725i \(0.673726\pi\)
\(278\) 0 0
\(279\) 3.00000 0.179605
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) −5.00000 8.66025i −0.297219 0.514799i 0.678280 0.734804i \(-0.262726\pi\)
−0.975499 + 0.220005i \(0.929393\pi\)
\(284\) 0 0
\(285\) −4.00000 + 6.92820i −0.236940 + 0.410391i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 0 0
\(291\) −3.50000 6.06218i −0.205174 0.355371i
\(292\) 0 0
\(293\) 21.0000 1.22683 0.613417 0.789760i \(-0.289795\pi\)
0.613417 + 0.789760i \(0.289795\pi\)
\(294\) 0 0
\(295\) 11.0000 0.640445
\(296\) 0 0
\(297\) −2.50000 4.33013i −0.145065 0.251259i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −5.00000 + 8.66025i −0.287242 + 0.497519i
\(304\) 0 0
\(305\) 3.00000 + 5.19615i 0.171780 + 0.297531i
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 16.0000 + 27.7128i 0.907277 + 1.57145i 0.817832 + 0.575458i \(0.195176\pi\)
0.0894452 + 0.995992i \(0.471491\pi\)
\(312\) 0 0
\(313\) 0.500000 0.866025i 0.0282617 0.0489506i −0.851549 0.524276i \(-0.824336\pi\)
0.879810 + 0.475325i \(0.157669\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.50000 + 2.59808i −0.0842484 + 0.145922i −0.905071 0.425261i \(-0.860182\pi\)
0.820822 + 0.571184i \(0.193516\pi\)
\(318\) 0 0
\(319\) −12.5000 21.6506i −0.699866 1.21220i
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 0 0
\(323\) 32.0000 1.78053
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.00000 + 1.73205i −0.0553001 + 0.0957826i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.00000 + 3.46410i −0.109930 + 0.190404i −0.915742 0.401768i \(-0.868396\pi\)
0.805812 + 0.592172i \(0.201729\pi\)
\(332\) 0 0
\(333\) 2.00000 + 3.46410i 0.109599 + 0.189832i
\(334\) 0 0
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) 9.00000 0.490261 0.245131 0.969490i \(-0.421169\pi\)
0.245131 + 0.969490i \(0.421169\pi\)
\(338\) 0 0
\(339\) 8.00000 + 13.8564i 0.434500 + 0.752577i
\(340\) 0 0
\(341\) 7.50000 12.9904i 0.406148 0.703469i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.00000 + 3.46410i −0.107676 + 0.186501i
\(346\) 0 0
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 + 20.7846i 0.638696 + 1.10625i 0.985719 + 0.168397i \(0.0538590\pi\)
−0.347024 + 0.937856i \(0.612808\pi\)
\(354\) 0 0
\(355\) −1.00000 + 1.73205i −0.0530745 + 0.0919277i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.00000 8.66025i 0.263890 0.457071i −0.703382 0.710812i \(-0.748328\pi\)
0.967272 + 0.253741i \(0.0816611\pi\)
\(360\) 0 0
\(361\) −22.5000 38.9711i −1.18421 2.05111i
\(362\) 0 0
\(363\) −14.0000 −0.734809
\(364\) 0 0
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) −8.50000 14.7224i −0.443696 0.768505i 0.554264 0.832341i \(-0.313000\pi\)
−0.997960 + 0.0638362i \(0.979666\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 16.0000 27.7128i 0.828449 1.43492i −0.0708063 0.997490i \(-0.522557\pi\)
0.899255 0.437425i \(-0.144109\pi\)
\(374\) 0 0
\(375\) 4.50000 + 7.79423i 0.232379 + 0.402492i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) −4.50000 7.79423i −0.230542 0.399310i
\(382\) 0 0
\(383\) 17.0000 29.4449i 0.868659 1.50456i 0.00529229 0.999986i \(-0.498315\pi\)
0.863367 0.504576i \(-0.168351\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.00000 1.73205i 0.0508329 0.0880451i
\(388\) 0 0
\(389\) 1.00000 + 1.73205i 0.0507020 + 0.0878185i 0.890263 0.455448i \(-0.150521\pi\)
−0.839561 + 0.543266i \(0.817187\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) −1.00000 −0.0504433
\(394\) 0 0
\(395\) −1.50000 2.59808i −0.0754732 0.130723i
\(396\) 0 0
\(397\) 18.0000 31.1769i 0.903394 1.56472i 0.0803356 0.996768i \(-0.474401\pi\)
0.823058 0.567957i \(-0.192266\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.0000 + 20.7846i −0.599251 + 1.03793i 0.393680 + 0.919247i \(0.371202\pi\)
−0.992932 + 0.118686i \(0.962132\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 20.0000 0.991363
\(408\) 0 0
\(409\) −12.5000 21.6506i −0.618085 1.07056i −0.989835 0.142222i \(-0.954575\pi\)
0.371750 0.928333i \(-0.378758\pi\)
\(410\) 0 0
\(411\) −1.00000 + 1.73205i −0.0493264 + 0.0854358i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3.50000 + 6.06218i −0.171808 + 0.297581i
\(416\) 0 0
\(417\) −7.00000 12.1244i −0.342791 0.593732i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) 3.00000 + 5.19615i 0.145865 + 0.252646i
\(424\) 0 0
\(425\) 8.00000 13.8564i 0.388057 0.672134i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 + 10.3923i 0.289010 + 0.500580i 0.973574 0.228373i \(-0.0733406\pi\)
−0.684564 + 0.728953i \(0.740007\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) −5.00000 −0.239732
\(436\) 0 0
\(437\) −16.0000 27.7128i −0.765384 1.32568i
\(438\) 0 0
\(439\) −7.50000 + 12.9904i −0.357955 + 0.619997i −0.987619 0.156871i \(-0.949859\pi\)
0.629664 + 0.776868i \(0.283193\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.50000 14.7224i 0.403847 0.699484i −0.590339 0.807155i \(-0.701006\pi\)
0.994187 + 0.107671i \(0.0343394\pi\)
\(444\) 0 0
\(445\) 3.00000 + 5.19615i 0.142214 + 0.246321i
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 16.0000 0.755087 0.377543 0.925992i \(-0.376769\pi\)
0.377543 + 0.925992i \(0.376769\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −9.50000 + 16.4545i −0.446349 + 0.773099i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −15.5000 + 26.8468i −0.725059 + 1.25584i 0.233890 + 0.972263i \(0.424854\pi\)
−0.958950 + 0.283577i \(0.908479\pi\)
\(458\) 0 0
\(459\) 2.00000 + 3.46410i 0.0933520 + 0.161690i
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) −1.50000 2.59808i −0.0695608 0.120483i
\(466\) 0 0
\(467\) 10.0000 17.3205i 0.462745 0.801498i −0.536352 0.843995i \(-0.680198\pi\)
0.999097 + 0.0424970i \(0.0135313\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.00000 3.46410i 0.0921551 0.159617i
\(472\) 0 0
\(473\) −5.00000 8.66025i −0.229900 0.398199i
\(474\) 0 0
\(475\) −32.0000 −1.46826
\(476\) 0 0
\(477\) −9.00000 −0.412082
\(478\) 0 0
\(479\) −19.0000 32.9090i −0.868132 1.50365i −0.863903 0.503658i \(-0.831987\pi\)
−0.00422900 0.999991i \(-0.501346\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.50000 + 6.06218i −0.158927 + 0.275269i
\(486\) 0 0
\(487\) 2.50000 + 4.33013i 0.113286 + 0.196217i 0.917093 0.398673i \(-0.130529\pi\)
−0.803807 + 0.594890i \(0.797196\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −9.00000 −0.406164 −0.203082 0.979162i \(-0.565096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(492\) 0 0
\(493\) 10.0000 + 17.3205i 0.450377 + 0.780076i
\(494\) 0 0
\(495\) −2.50000 + 4.33013i −0.112367 + 0.194625i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 5.00000 8.66025i 0.223831 0.387686i −0.732137 0.681157i \(-0.761477\pi\)
0.955968 + 0.293471i \(0.0948104\pi\)
\(500\) 0 0
\(501\) −7.00000 12.1244i −0.312737 0.541676i
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) −6.50000 11.2583i −0.288675 0.500000i
\(508\) 0 0
\(509\) 7.50000 12.9904i 0.332432 0.575789i −0.650556 0.759458i \(-0.725464\pi\)
0.982988 + 0.183669i \(0.0587976\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.00000 6.92820i 0.176604 0.305888i
\(514\) 0 0
\(515\) 4.00000 + 6.92820i 0.176261 + 0.305293i
\(516\) 0 0
\(517\) 30.0000 1.31940
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −9.00000 15.5885i −0.394297 0.682943i 0.598714 0.800963i \(-0.295679\pi\)
−0.993011 + 0.118020i \(0.962345\pi\)
\(522\) 0 0
\(523\) −4.00000 + 6.92820i −0.174908 + 0.302949i −0.940129 0.340818i \(-0.889296\pi\)
0.765222 + 0.643767i \(0.222629\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) −11.0000 −0.477359
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.50000 2.59808i −0.0648507 0.112325i
\(536\) 0 0
\(537\) −6.00000 + 10.3923i −0.258919 + 0.448461i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 9.00000 15.5885i 0.386940 0.670200i −0.605096 0.796152i \(-0.706865\pi\)
0.992036 + 0.125952i \(0.0401986\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 0 0
\(549\) −3.00000 5.19615i −0.128037 0.221766i
\(550\) 0 0
\(551\) 20.0000 34.6410i 0.852029 1.47576i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.00000 3.46410i 0.0848953 0.147043i
\(556\) 0 0
\(557\) 11.5000 + 19.9186i 0.487271 + 0.843978i 0.999893 0.0146368i \(-0.00465919\pi\)
−0.512622 + 0.858614i \(0.671326\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 20.0000 0.844401
\(562\) 0 0
\(563\) −8.50000 14.7224i −0.358232 0.620477i 0.629433 0.777055i \(-0.283287\pi\)
−0.987666 + 0.156578i \(0.949954\pi\)
\(564\) 0 0
\(565\) 8.00000 13.8564i 0.336563 0.582943i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.0000 + 20.7846i −0.503066 + 0.871336i 0.496928 + 0.867792i \(0.334461\pi\)
−0.999994 + 0.00354413i \(0.998872\pi\)
\(570\) 0 0
\(571\) −15.0000 25.9808i −0.627730 1.08726i −0.988006 0.154415i \(-0.950651\pi\)
0.360276 0.932846i \(-0.382683\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) 0 0
\(575\) −16.0000 −0.667246
\(576\) 0 0
\(577\) 15.5000 + 26.8468i 0.645273 + 1.11765i 0.984238 + 0.176847i \(0.0565899\pi\)
−0.338965 + 0.940799i \(0.610077\pi\)
\(578\) 0 0
\(579\) 2.50000 4.33013i 0.103896 0.179954i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −22.5000 + 38.9711i −0.931855 + 1.61402i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 35.0000 1.44460 0.722302 0.691577i \(-0.243084\pi\)
0.722302 + 0.691577i \(0.243084\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) 1.00000 + 1.73205i 0.0411345 + 0.0712470i
\(592\) 0 0
\(593\) 18.0000 31.1769i 0.739171 1.28028i −0.213697 0.976900i \(-0.568551\pi\)
0.952869 0.303383i \(-0.0981160\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.00000 + 3.46410i −0.0818546 + 0.141776i
\(598\) 0 0
\(599\) −15.0000 25.9808i −0.612883 1.06155i −0.990752 0.135686i \(-0.956676\pi\)
0.377869 0.925859i \(-0.376657\pi\)
\(600\) 0 0
\(601\) −35.0000 −1.42768 −0.713840 0.700309i \(-0.753046\pi\)
−0.713840 + 0.700309i \(0.753046\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) 0 0
\(605\) 7.00000 + 12.1244i 0.284590 + 0.492925i
\(606\) 0 0
\(607\) 13.5000 23.3827i 0.547948 0.949074i −0.450467 0.892793i \(-0.648742\pi\)
0.998415 0.0562808i \(-0.0179242\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −6.00000 10.3923i −0.242338 0.419741i 0.719042 0.694967i \(-0.244581\pi\)
−0.961380 + 0.275225i \(0.911248\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) −5.00000 8.66025i −0.200967 0.348085i 0.747873 0.663842i \(-0.231075\pi\)
−0.948840 + 0.315757i \(0.897742\pi\)
\(620\) 0 0
\(621\) 2.00000 3.46410i 0.0802572 0.139010i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 0 0
\(627\) −20.0000 34.6410i −0.798723 1.38343i
\(628\) 0 0
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) 19.0000 0.756378 0.378189 0.925728i \(-0.376547\pi\)
0.378189 + 0.925728i \(0.376547\pi\)
\(632\) 0 0
\(633\) −1.00000 1.73205i −0.0397464 0.0688428i
\(634\) 0 0
\(635\) −4.50000 + 7.79423i −0.178577 + 0.309305i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.00000 1.73205i 0.0395594 0.0685189i
\(640\) 0 0
\(641\) −13.0000 22.5167i −0.513469 0.889355i −0.999878 0.0156233i \(-0.995027\pi\)
0.486409 0.873731i \(-0.338307\pi\)
\(642\) 0 0
\(643\) 14.0000 0.552106 0.276053 0.961142i \(-0.410973\pi\)
0.276053 + 0.961142i \(0.410973\pi\)
\(644\) 0 0
\(645\) −2.00000 −0.0787499
\(646\) 0 0
\(647\) 9.00000 + 15.5885i 0.353827 + 0.612845i 0.986916 0.161233i \(-0.0515470\pi\)
−0.633090 + 0.774078i \(0.718214\pi\)
\(648\) 0 0
\(649\) −27.5000 + 47.6314i −1.07947 + 1.86970i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.5000 33.7750i 0.763094 1.32172i −0.178154 0.984003i \(-0.557013\pi\)
0.941248 0.337715i \(-0.109654\pi\)
\(654\) 0 0
\(655\) 0.500000 + 0.866025i 0.0195366 + 0.0338384i
\(656\) 0 0
\(657\) −10.0000 −0.390137
\(658\) 0 0
\(659\) 40.0000 1.55818 0.779089 0.626913i \(-0.215682\pi\)
0.779089 + 0.626913i \(0.215682\pi\)
\(660\) 0 0
\(661\) 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i \(-0.104366\pi\)
−0.752252 + 0.658876i \(0.771032\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.0000 17.3205i 0.387202 0.670653i
\(668\) 0 0
\(669\) −3.50000 6.06218i −0.135318 0.234377i
\(670\) 0 0
\(671\) −30.0000 −1.15814
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 0 0
\(675\) −2.00000 3.46410i −0.0769800 0.133333i
\(676\) 0 0
\(677\) −13.5000 + 23.3827i −0.518847 + 0.898670i 0.480913 + 0.876768i \(0.340305\pi\)
−0.999760 + 0.0219013i \(0.993028\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.50000 2.59808i 0.0574801 0.0995585i
\(682\) 0 0
\(683\) −4.50000 7.79423i −0.172188 0.298238i 0.766997 0.641651i \(-0.221750\pi\)
−0.939184 + 0.343413i \(0.888417\pi\)
\(684\) 0 0
\(685\) 2.00000 0.0764161
\(686\) 0 0
\(687\) −20.0000 −0.763048
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i \(-0.881959\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.00000 + 12.1244i −0.265525 + 0.459903i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 4.00000 0.151294
\(700\) 0 0
\(701\) −5.00000 −0.188847 −0.0944237 0.995532i \(-0.530101\pi\)
−0.0944237 + 0.995532i \(0.530101\pi\)
\(702\) 0 0
\(703\) 16.0000 + 27.7128i 0.603451 + 1.04521i
\(704\) 0 0
\(705\) 3.00000 5.19615i 0.112987 0.195698i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −19.0000 + 32.9090i −0.713560 + 1.23592i 0.249952 + 0.968258i \(0.419585\pi\)
−0.963512 + 0.267664i \(0.913748\pi\)
\(710\) 0 0
\(711\) 1.50000 + 2.59808i 0.0562544 + 0.0974355i
\(712\) 0 0
\(713\) 12.0000 0.449404
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.00000 + 10.3923i 0.224074 + 0.388108i
\(718\) 0 0
\(719\) 3.00000 5.19615i 0.111881 0.193784i −0.804648 0.593753i \(-0.797646\pi\)
0.916529 + 0.399969i \(0.130979\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 12.5000 21.6506i 0.464880 0.805196i
\(724\) 0 0
\(725\) −10.0000 17.3205i −0.371391 0.643268i
\(726\) 0 0
\(727\) 7.00000 0.259616 0.129808 0.991539i \(-0.458564\pi\)
0.129808 + 0.991539i \(0.458564\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 4.00000 + 6.92820i 0.147945 + 0.256249i
\(732\) 0 0
\(733\) −3.00000 + 5.19615i −0.110808 + 0.191924i −0.916096 0.400959i \(-0.868677\pi\)
0.805289 + 0.592883i \(0.202010\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.00000 8.66025i 0.184177 0.319005i
\(738\) 0 0
\(739\) −15.0000 25.9808i −0.551784 0.955718i −0.998146 0.0608653i \(-0.980614\pi\)
0.446362 0.894852i \(-0.352719\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 0 0
\(745\) −9.00000 15.5885i −0.329734 0.571117i
\(746\) 0 0
\(747\) 3.50000 6.06218i 0.128058 0.221803i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 22.5000 38.9711i 0.821037 1.42208i −0.0838743 0.996476i \(-0.526729\pi\)
0.904911 0.425601i \(-0.139937\pi\)
\(752\) 0 0
\(753\) 10.5000 + 18.1865i 0.382641 + 0.662754i
\(754\) 0 0
\(755\) 19.0000 0.691481
\(756\) 0 0
\(757\) −54.0000 −1.96266 −0.981332 0.192323i \(-0.938398\pi\)
−0.981332 + 0.192323i \(0.938398\pi\)
\(758\) 0 0
\(759\) −10.0000 17.3205i −0.362977 0.628695i
\(760\) 0 0
\(761\) 4.00000 6.92820i 0.145000 0.251147i −0.784373 0.620289i \(-0.787015\pi\)
0.929373 + 0.369142i \(0.120348\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.00000 3.46410i 0.0723102 0.125245i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 35.0000 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) 5.00000 + 8.66025i 0.179838 + 0.311488i 0.941825 0.336104i \(-0.109109\pi\)
−0.761987 + 0.647592i \(0.775776\pi\)
\(774\) 0 0
\(775\) 6.00000 10.3923i 0.215526 0.373303i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −5.00000 8.66025i −0.178914 0.309888i
\(782\) 0 0
\(783\) 5.00000 0.178685
\(784\) 0 0
\(785\) −4.00000 −0.142766
\(786\) 0 0
\(787\) 9.00000 + 15.5885i 0.320815 + 0.555668i 0.980656 0.195737i \(-0.0627098\pi\)
−0.659841 + 0.751405i \(0.729376\pi\)
\(788\) 0 0
\(789\) 15.0000 25.9808i 0.534014 0.924940i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 4.50000 + 7.79423i 0.159599 + 0.276433i
\(796\) 0 0
\(797\) −21.0000 −0.743858 −0.371929 0.928261i \(-0.621304\pi\)
−0.371929 + 0.928261i \(0.621304\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0
\(801\) −3.00000 5.19615i −0.106000 0.183597i
\(802\) 0 0
\(803\) −25.0000 + 43.3013i −0.882231 + 1.52807i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −15.5000 + 26.8468i −0.545626 + 0.945052i
\(808\) 0 0
\(809\) −20.0000 34.6410i −0.703163 1.21791i −0.967351 0.253442i \(-0.918437\pi\)
0.264188 0.964471i \(-0.414896\pi\)
\(810\) 0 0
\(811\) −14.0000 −0.491606 −0.245803 0.969320i \(-0.579052\pi\)
−0.245803 + 0.969320i \(0.579052\pi\)
\(812\) 0 0
\(813\) −15.0000 −0.526073
\(814\) 0 0
\(815\) 2.00000 + 3.46410i 0.0700569