# Properties

 Label 2352.2.q.u.1537.1 Level $2352$ Weight $2$ Character 2352.1537 Analytic conductor $18.781$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2352 = 2^{4} \cdot 3 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2352.q (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$18.7808145554$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 42) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 1537.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 2352.1537 Dual form 2352.2.q.u.961.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+(0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-0.500000 - 0.866025i) q^{9} +(2.50000 - 4.33013i) q^{11} +1.00000 q^{15} +(-2.00000 + 3.46410i) q^{17} +(-4.00000 - 6.92820i) q^{19} +(-2.00000 - 3.46410i) q^{23} +(2.00000 - 3.46410i) q^{25} -1.00000 q^{27} -5.00000 q^{29} +(-1.50000 + 2.59808i) q^{31} +(-2.50000 - 4.33013i) q^{33} +(2.00000 + 3.46410i) q^{37} -2.00000 q^{43} +(0.500000 - 0.866025i) q^{45} +(3.00000 + 5.19615i) q^{47} +(2.00000 + 3.46410i) q^{51} +(4.50000 - 7.79423i) q^{53} +5.00000 q^{55} -8.00000 q^{57} +(5.50000 - 9.52628i) q^{59} +(-3.00000 - 5.19615i) q^{61} +(-1.00000 + 1.73205i) q^{67} -4.00000 q^{69} -2.00000 q^{71} +(5.00000 - 8.66025i) q^{73} +(-2.00000 - 3.46410i) q^{75} +(1.50000 + 2.59808i) q^{79} +(-0.500000 + 0.866025i) q^{81} -7.00000 q^{83} -4.00000 q^{85} +(-2.50000 + 4.33013i) q^{87} +(-3.00000 - 5.19615i) q^{89} +(1.50000 + 2.59808i) q^{93} +(4.00000 - 6.92820i) q^{95} -7.00000 q^{97} -5.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{3} + q^{5} - q^{9} + O(q^{10})$$ $$2q + q^{3} + q^{5} - q^{9} + 5q^{11} + 2q^{15} - 4q^{17} - 8q^{19} - 4q^{23} + 4q^{25} - 2q^{27} - 10q^{29} - 3q^{31} - 5q^{33} + 4q^{37} - 4q^{43} + q^{45} + 6q^{47} + 4q^{51} + 9q^{53} + 10q^{55} - 16q^{57} + 11q^{59} - 6q^{61} - 2q^{67} - 8q^{69} - 4q^{71} + 10q^{73} - 4q^{75} + 3q^{79} - q^{81} - 14q^{83} - 8q^{85} - 5q^{87} - 6q^{89} + 3q^{93} + 8q^{95} - 14q^{97} - 10q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1471$$ $$1765$$ $$2257$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0.500000 0.866025i 0.288675 0.500000i
$$4$$ 0 0
$$5$$ 0.500000 + 0.866025i 0.223607 + 0.387298i 0.955901 0.293691i $$-0.0948835\pi$$
−0.732294 + 0.680989i $$0.761550\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ −0.500000 0.866025i −0.166667 0.288675i
$$10$$ 0 0
$$11$$ 2.50000 4.33013i 0.753778 1.30558i −0.192201 0.981356i $$-0.561563\pi$$
0.945979 0.324227i $$-0.105104\pi$$
$$12$$ 0 0
$$13$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$14$$ 0 0
$$15$$ 1.00000 0.258199
$$16$$ 0 0
$$17$$ −2.00000 + 3.46410i −0.485071 + 0.840168i −0.999853 0.0171533i $$-0.994540\pi$$
0.514782 + 0.857321i $$0.327873\pi$$
$$18$$ 0 0
$$19$$ −4.00000 6.92820i −0.917663 1.58944i −0.802955 0.596040i $$-0.796740\pi$$
−0.114708 0.993399i $$-0.536593\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i $$-0.303595\pi$$
−0.995639 + 0.0932891i $$0.970262\pi$$
$$24$$ 0 0
$$25$$ 2.00000 3.46410i 0.400000 0.692820i
$$26$$ 0 0
$$27$$ −1.00000 −0.192450
$$28$$ 0 0
$$29$$ −5.00000 −0.928477 −0.464238 0.885710i $$-0.653672\pi$$
−0.464238 + 0.885710i $$0.653672\pi$$
$$30$$ 0 0
$$31$$ −1.50000 + 2.59808i −0.269408 + 0.466628i −0.968709 0.248199i $$-0.920161\pi$$
0.699301 + 0.714827i $$0.253495\pi$$
$$32$$ 0 0
$$33$$ −2.50000 4.33013i −0.435194 0.753778i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 2.00000 + 3.46410i 0.328798 + 0.569495i 0.982274 0.187453i $$-0.0600231\pi$$
−0.653476 + 0.756948i $$0.726690\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$42$$ 0 0
$$43$$ −2.00000 −0.304997 −0.152499 0.988304i $$-0.548732\pi$$
−0.152499 + 0.988304i $$0.548732\pi$$
$$44$$ 0 0
$$45$$ 0.500000 0.866025i 0.0745356 0.129099i
$$46$$ 0 0
$$47$$ 3.00000 + 5.19615i 0.437595 + 0.757937i 0.997503 0.0706177i $$-0.0224970\pi$$
−0.559908 + 0.828554i $$0.689164\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 2.00000 + 3.46410i 0.280056 + 0.485071i
$$52$$ 0 0
$$53$$ 4.50000 7.79423i 0.618123 1.07062i −0.371706 0.928351i $$-0.621227\pi$$
0.989828 0.142269i $$-0.0454398\pi$$
$$54$$ 0 0
$$55$$ 5.00000 0.674200
$$56$$ 0 0
$$57$$ −8.00000 −1.05963
$$58$$ 0 0
$$59$$ 5.50000 9.52628i 0.716039 1.24022i −0.246518 0.969138i $$-0.579287\pi$$
0.962557 0.271078i $$-0.0873801\pi$$
$$60$$ 0 0
$$61$$ −3.00000 5.19615i −0.384111 0.665299i 0.607535 0.794293i $$-0.292159\pi$$
−0.991645 + 0.128994i $$0.958825\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −1.00000 + 1.73205i −0.122169 + 0.211604i −0.920623 0.390453i $$-0.872318\pi$$
0.798454 + 0.602056i $$0.205652\pi$$
$$68$$ 0 0
$$69$$ −4.00000 −0.481543
$$70$$ 0 0
$$71$$ −2.00000 −0.237356 −0.118678 0.992933i $$-0.537866\pi$$
−0.118678 + 0.992933i $$0.537866\pi$$
$$72$$ 0 0
$$73$$ 5.00000 8.66025i 0.585206 1.01361i −0.409644 0.912245i $$-0.634347\pi$$
0.994850 0.101361i $$-0.0323196\pi$$
$$74$$ 0 0
$$75$$ −2.00000 3.46410i −0.230940 0.400000i
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 1.50000 + 2.59808i 0.168763 + 0.292306i 0.937985 0.346675i $$-0.112689\pi$$
−0.769222 + 0.638982i $$0.779356\pi$$
$$80$$ 0 0
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ 0 0
$$83$$ −7.00000 −0.768350 −0.384175 0.923260i $$-0.625514\pi$$
−0.384175 + 0.923260i $$0.625514\pi$$
$$84$$ 0 0
$$85$$ −4.00000 −0.433861
$$86$$ 0 0
$$87$$ −2.50000 + 4.33013i −0.268028 + 0.464238i
$$88$$ 0 0
$$89$$ −3.00000 5.19615i −0.317999 0.550791i 0.662071 0.749441i $$-0.269678\pi$$
−0.980071 + 0.198650i $$0.936344\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 1.50000 + 2.59808i 0.155543 + 0.269408i
$$94$$ 0 0
$$95$$ 4.00000 6.92820i 0.410391 0.710819i
$$96$$ 0 0
$$97$$ −7.00000 −0.710742 −0.355371 0.934725i $$-0.615646\pi$$
−0.355371 + 0.934725i $$0.615646\pi$$
$$98$$ 0 0
$$99$$ −5.00000 −0.502519
$$100$$ 0 0
$$101$$ 5.00000 8.66025i 0.497519 0.861727i −0.502477 0.864590i $$-0.667578\pi$$
0.999996 + 0.00286291i $$0.000911295\pi$$
$$102$$ 0 0
$$103$$ −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i $$-0.295621\pi$$
−0.992990 + 0.118199i $$0.962288\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i $$-0.120345\pi$$
−0.784366 + 0.620298i $$0.787012\pi$$
$$108$$ 0 0
$$109$$ 1.00000 1.73205i 0.0957826 0.165900i −0.814152 0.580651i $$-0.802798\pi$$
0.909935 + 0.414751i $$0.136131\pi$$
$$110$$ 0 0
$$111$$ 4.00000 0.379663
$$112$$ 0 0
$$113$$ 16.0000 1.50515 0.752577 0.658505i $$-0.228811\pi$$
0.752577 + 0.658505i $$0.228811\pi$$
$$114$$ 0 0
$$115$$ 2.00000 3.46410i 0.186501 0.323029i
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −7.00000 12.1244i −0.636364 1.10221i
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 9.00000 0.804984
$$126$$ 0 0
$$127$$ −9.00000 −0.798621 −0.399310 0.916816i $$-0.630750\pi$$
−0.399310 + 0.916816i $$0.630750\pi$$
$$128$$ 0 0
$$129$$ −1.00000 + 1.73205i −0.0880451 + 0.152499i
$$130$$ 0 0
$$131$$ −0.500000 0.866025i −0.0436852 0.0756650i 0.843356 0.537355i $$-0.180577\pi$$
−0.887041 + 0.461690i $$0.847243\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ −0.500000 0.866025i −0.0430331 0.0745356i
$$136$$ 0 0
$$137$$ 1.00000 1.73205i 0.0854358 0.147979i −0.820141 0.572161i $$-0.806105\pi$$
0.905577 + 0.424182i $$0.139438\pi$$
$$138$$ 0 0
$$139$$ −14.0000 −1.18746 −0.593732 0.804663i $$-0.702346\pi$$
−0.593732 + 0.804663i $$0.702346\pi$$
$$140$$ 0 0
$$141$$ 6.00000 0.505291
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ −2.50000 4.33013i −0.207614 0.359597i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 9.00000 + 15.5885i 0.737309 + 1.27706i 0.953703 + 0.300750i $$0.0972370\pi$$
−0.216394 + 0.976306i $$0.569430\pi$$
$$150$$ 0 0
$$151$$ 9.50000 16.4545i 0.773099 1.33905i −0.162758 0.986666i $$-0.552039\pi$$
0.935857 0.352381i $$-0.114628\pi$$
$$152$$ 0 0
$$153$$ 4.00000 0.323381
$$154$$ 0 0
$$155$$ −3.00000 −0.240966
$$156$$ 0 0
$$157$$ −2.00000 + 3.46410i −0.159617 + 0.276465i −0.934731 0.355357i $$-0.884359\pi$$
0.775113 + 0.631822i $$0.217693\pi$$
$$158$$ 0 0
$$159$$ −4.50000 7.79423i −0.356873 0.618123i
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −2.00000 3.46410i −0.156652 0.271329i 0.777007 0.629492i $$-0.216737\pi$$
−0.933659 + 0.358162i $$0.883403\pi$$
$$164$$ 0 0
$$165$$ 2.50000 4.33013i 0.194625 0.337100i
$$166$$ 0 0
$$167$$ −14.0000 −1.08335 −0.541676 0.840587i $$-0.682210\pi$$
−0.541676 + 0.840587i $$0.682210\pi$$
$$168$$ 0 0
$$169$$ −13.0000 −1.00000
$$170$$ 0 0
$$171$$ −4.00000 + 6.92820i −0.305888 + 0.529813i
$$172$$ 0 0
$$173$$ 11.0000 + 19.0526i 0.836315 + 1.44854i 0.892956 + 0.450145i $$0.148628\pi$$
−0.0566411 + 0.998395i $$0.518039\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −5.50000 9.52628i −0.413405 0.716039i
$$178$$ 0 0
$$179$$ 6.00000 10.3923i 0.448461 0.776757i −0.549825 0.835280i $$-0.685306\pi$$
0.998286 + 0.0585225i $$0.0186389\pi$$
$$180$$ 0 0
$$181$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$182$$ 0 0
$$183$$ −6.00000 −0.443533
$$184$$ 0 0
$$185$$ −2.00000 + 3.46410i −0.147043 + 0.254686i
$$186$$ 0 0
$$187$$ 10.0000 + 17.3205i 0.731272 + 1.26660i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 12.0000 + 20.7846i 0.868290 + 1.50392i 0.863743 + 0.503932i $$0.168114\pi$$
0.00454614 + 0.999990i $$0.498553\pi$$
$$192$$ 0 0
$$193$$ −2.50000 + 4.33013i −0.179954 + 0.311689i −0.941865 0.335993i $$-0.890928\pi$$
0.761911 + 0.647682i $$0.224262\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 2.00000 0.142494 0.0712470 0.997459i $$-0.477302\pi$$
0.0712470 + 0.997459i $$0.477302\pi$$
$$198$$ 0 0
$$199$$ 2.00000 3.46410i 0.141776 0.245564i −0.786389 0.617731i $$-0.788052\pi$$
0.928166 + 0.372168i $$0.121385\pi$$
$$200$$ 0 0
$$201$$ 1.00000 + 1.73205i 0.0705346 + 0.122169i
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ −2.00000 + 3.46410i −0.139010 + 0.240772i
$$208$$ 0 0
$$209$$ −40.0000 −2.76686
$$210$$ 0 0
$$211$$ −2.00000 −0.137686 −0.0688428 0.997628i $$-0.521931\pi$$
−0.0688428 + 0.997628i $$0.521931\pi$$
$$212$$ 0 0
$$213$$ −1.00000 + 1.73205i −0.0685189 + 0.118678i
$$214$$ 0 0
$$215$$ −1.00000 1.73205i −0.0681994 0.118125i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ −5.00000 8.66025i −0.337869 0.585206i
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ −7.00000 −0.468755 −0.234377 0.972146i $$-0.575305\pi$$
−0.234377 + 0.972146i $$0.575305\pi$$
$$224$$ 0 0
$$225$$ −4.00000 −0.266667
$$226$$ 0 0
$$227$$ −1.50000 + 2.59808i −0.0995585 + 0.172440i −0.911502 0.411296i $$-0.865076\pi$$
0.811943 + 0.583736i $$0.198410\pi$$
$$228$$ 0 0
$$229$$ −10.0000 17.3205i −0.660819 1.14457i −0.980401 0.197013i $$-0.936876\pi$$
0.319582 0.947559i $$-0.396457\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 2.00000 + 3.46410i 0.131024 + 0.226941i 0.924072 0.382219i $$-0.124840\pi$$
−0.793047 + 0.609160i $$0.791507\pi$$
$$234$$ 0 0
$$235$$ −3.00000 + 5.19615i −0.195698 + 0.338960i
$$236$$ 0 0
$$237$$ 3.00000 0.194871
$$238$$ 0 0
$$239$$ 12.0000 0.776215 0.388108 0.921614i $$-0.373129\pi$$
0.388108 + 0.921614i $$0.373129\pi$$
$$240$$ 0 0
$$241$$ −12.5000 + 21.6506i −0.805196 + 1.39464i 0.110963 + 0.993825i $$0.464606\pi$$
−0.916159 + 0.400815i $$0.868727\pi$$
$$242$$ 0 0
$$243$$ 0.500000 + 0.866025i 0.0320750 + 0.0555556i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ −3.50000 + 6.06218i −0.221803 + 0.384175i
$$250$$ 0 0
$$251$$ 21.0000 1.32551 0.662754 0.748837i $$-0.269387\pi$$
0.662754 + 0.748837i $$0.269387\pi$$
$$252$$ 0 0
$$253$$ −20.0000 −1.25739
$$254$$ 0 0
$$255$$ −2.00000 + 3.46410i −0.125245 + 0.216930i
$$256$$ 0 0
$$257$$ −3.00000 5.19615i −0.187135 0.324127i 0.757159 0.653231i $$-0.226587\pi$$
−0.944294 + 0.329104i $$0.893253\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 2.50000 + 4.33013i 0.154746 + 0.268028i
$$262$$ 0 0
$$263$$ −15.0000 + 25.9808i −0.924940 + 1.60204i −0.133281 + 0.991078i $$0.542551\pi$$
−0.791658 + 0.610964i $$0.790782\pi$$
$$264$$ 0 0
$$265$$ 9.00000 0.552866
$$266$$ 0 0
$$267$$ −6.00000 −0.367194
$$268$$ 0 0
$$269$$ 15.5000 26.8468i 0.945052 1.63688i 0.189404 0.981899i $$-0.439344\pi$$
0.755648 0.654978i $$-0.227322\pi$$
$$270$$ 0 0
$$271$$ −7.50000 12.9904i −0.455593 0.789109i 0.543130 0.839649i $$-0.317239\pi$$
−0.998722 + 0.0505395i $$0.983906\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −10.0000 17.3205i −0.603023 1.04447i
$$276$$ 0 0
$$277$$ 8.00000 13.8564i 0.480673 0.832551i −0.519081 0.854725i $$-0.673726\pi$$
0.999754 + 0.0221745i $$0.00705893\pi$$
$$278$$ 0 0
$$279$$ 3.00000 0.179605
$$280$$ 0 0
$$281$$ 2.00000 0.119310 0.0596550 0.998219i $$-0.481000\pi$$
0.0596550 + 0.998219i $$0.481000\pi$$
$$282$$ 0 0
$$283$$ −5.00000 + 8.66025i −0.297219 + 0.514799i −0.975499 0.220005i $$-0.929393\pi$$
0.678280 + 0.734804i $$0.262726\pi$$
$$284$$ 0 0
$$285$$ −4.00000 6.92820i −0.236940 0.410391i
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 0.500000 + 0.866025i 0.0294118 + 0.0509427i
$$290$$ 0 0
$$291$$ −3.50000 + 6.06218i −0.205174 + 0.355371i
$$292$$ 0 0
$$293$$ 21.0000 1.22683 0.613417 0.789760i $$-0.289795\pi$$
0.613417 + 0.789760i $$0.289795\pi$$
$$294$$ 0 0
$$295$$ 11.0000 0.640445
$$296$$ 0 0
$$297$$ −2.50000 + 4.33013i −0.145065 + 0.251259i
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ −5.00000 8.66025i −0.287242 0.497519i
$$304$$ 0 0
$$305$$ 3.00000 5.19615i 0.171780 0.297531i
$$306$$ 0 0
$$307$$ 28.0000 1.59804 0.799022 0.601302i $$-0.205351\pi$$
0.799022 + 0.601302i $$0.205351\pi$$
$$308$$ 0 0
$$309$$ −8.00000 −0.455104
$$310$$ 0 0
$$311$$ 16.0000 27.7128i 0.907277 1.57145i 0.0894452 0.995992i $$-0.471491\pi$$
0.817832 0.575458i $$-0.195176\pi$$
$$312$$ 0 0
$$313$$ 0.500000 + 0.866025i 0.0282617 + 0.0489506i 0.879810 0.475325i $$-0.157669\pi$$
−0.851549 + 0.524276i $$0.824336\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −1.50000 2.59808i −0.0842484 0.145922i 0.820822 0.571184i $$-0.193516\pi$$
−0.905071 + 0.425261i $$0.860182\pi$$
$$318$$ 0 0
$$319$$ −12.5000 + 21.6506i −0.699866 + 1.21220i
$$320$$ 0 0
$$321$$ 3.00000 0.167444
$$322$$ 0 0
$$323$$ 32.0000 1.78053
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ −1.00000 1.73205i −0.0553001 0.0957826i
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −2.00000 3.46410i −0.109930 0.190404i 0.805812 0.592172i $$-0.201729\pi$$
−0.915742 + 0.401768i $$0.868396\pi$$
$$332$$ 0 0
$$333$$ 2.00000 3.46410i 0.109599 0.189832i
$$334$$ 0 0
$$335$$ −2.00000 −0.109272
$$336$$ 0 0
$$337$$ 9.00000 0.490261 0.245131 0.969490i $$-0.421169\pi$$
0.245131 + 0.969490i $$0.421169\pi$$
$$338$$ 0 0
$$339$$ 8.00000 13.8564i 0.434500 0.752577i
$$340$$ 0 0
$$341$$ 7.50000 + 12.9904i 0.406148 + 0.703469i
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ −2.00000 3.46410i −0.107676 0.186501i
$$346$$ 0 0
$$347$$ 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i $$-0.728946\pi$$
0.980921 + 0.194409i $$0.0622790\pi$$
$$348$$ 0 0
$$349$$ 14.0000 0.749403 0.374701 0.927146i $$-0.377745\pi$$
0.374701 + 0.927146i $$0.377745\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i $$-0.612808\pi$$
0.985719 0.168397i $$-0.0538590\pi$$
$$354$$ 0 0
$$355$$ −1.00000 1.73205i −0.0530745 0.0919277i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 5.00000 + 8.66025i 0.263890 + 0.457071i 0.967272 0.253741i $$-0.0816611\pi$$
−0.703382 + 0.710812i $$0.748328\pi$$
$$360$$ 0 0
$$361$$ −22.5000 + 38.9711i −1.18421 + 2.05111i
$$362$$ 0 0
$$363$$ −14.0000 −0.734809
$$364$$ 0 0
$$365$$ 10.0000 0.523424
$$366$$ 0 0
$$367$$ −8.50000 + 14.7224i −0.443696 + 0.768505i −0.997960 0.0638362i $$-0.979666\pi$$
0.554264 + 0.832341i $$0.313000\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 16.0000 + 27.7128i 0.828449 + 1.43492i 0.899255 + 0.437425i $$0.144109\pi$$
−0.0708063 + 0.997490i $$0.522557\pi$$
$$374$$ 0 0
$$375$$ 4.50000 7.79423i 0.232379 0.402492i
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −16.0000 −0.821865 −0.410932 0.911666i $$-0.634797\pi$$
−0.410932 + 0.911666i $$0.634797\pi$$
$$380$$ 0 0
$$381$$ −4.50000 + 7.79423i −0.230542 + 0.399310i
$$382$$ 0 0
$$383$$ 17.0000 + 29.4449i 0.868659 + 1.50456i 0.863367 + 0.504576i $$0.168351\pi$$
0.00529229 + 0.999986i $$0.498315\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 1.00000 + 1.73205i 0.0508329 + 0.0880451i
$$388$$ 0 0
$$389$$ 1.00000 1.73205i 0.0507020 0.0878185i −0.839561 0.543266i $$-0.817187\pi$$
0.890263 + 0.455448i $$0.150521\pi$$
$$390$$ 0 0
$$391$$ 16.0000 0.809155
$$392$$ 0 0
$$393$$ −1.00000 −0.0504433
$$394$$ 0 0
$$395$$ −1.50000 + 2.59808i −0.0754732 + 0.130723i
$$396$$ 0 0
$$397$$ 18.0000 + 31.1769i 0.903394 + 1.56472i 0.823058 + 0.567957i $$0.192266\pi$$
0.0803356 + 0.996768i $$0.474401\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −12.0000 20.7846i −0.599251 1.03793i −0.992932 0.118686i $$-0.962132\pi$$
0.393680 0.919247i $$-0.371202\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ −1.00000 −0.0496904
$$406$$ 0 0
$$407$$ 20.0000 0.991363
$$408$$ 0 0
$$409$$ −12.5000 + 21.6506i −0.618085 + 1.07056i 0.371750 + 0.928333i $$0.378758\pi$$
−0.989835 + 0.142222i $$0.954575\pi$$
$$410$$ 0 0
$$411$$ −1.00000 1.73205i −0.0493264 0.0854358i
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −3.50000 6.06218i −0.171808 0.297581i
$$416$$ 0 0
$$417$$ −7.00000 + 12.1244i −0.342791 + 0.593732i
$$418$$ 0 0
$$419$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$420$$ 0 0
$$421$$ 30.0000 1.46211 0.731055 0.682318i $$-0.239028\pi$$
0.731055 + 0.682318i $$0.239028\pi$$
$$422$$ 0 0
$$423$$ 3.00000 5.19615i 0.145865 0.252646i
$$424$$ 0 0
$$425$$ 8.00000 + 13.8564i 0.388057 + 0.672134i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 6.00000 10.3923i 0.289010 0.500580i −0.684564 0.728953i $$-0.740007\pi$$
0.973574 + 0.228373i $$0.0733406\pi$$
$$432$$ 0 0
$$433$$ −14.0000 −0.672797 −0.336399 0.941720i $$-0.609209\pi$$
−0.336399 + 0.941720i $$0.609209\pi$$
$$434$$ 0 0
$$435$$ −5.00000 −0.239732
$$436$$ 0 0
$$437$$ −16.0000 + 27.7128i −0.765384 + 1.32568i
$$438$$ 0 0
$$439$$ −7.50000 12.9904i −0.357955 0.619997i 0.629664 0.776868i $$-0.283193\pi$$
−0.987619 + 0.156871i $$0.949859\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 8.50000 + 14.7224i 0.403847 + 0.699484i 0.994187 0.107671i $$-0.0343394\pi$$
−0.590339 + 0.807155i $$0.701006\pi$$
$$444$$ 0 0
$$445$$ 3.00000 5.19615i 0.142214 0.246321i
$$446$$ 0 0
$$447$$ 18.0000 0.851371
$$448$$ 0 0
$$449$$ 16.0000 0.755087 0.377543 0.925992i $$-0.376769\pi$$
0.377543 + 0.925992i $$0.376769\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ −9.50000 16.4545i −0.446349 0.773099i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −15.5000 26.8468i −0.725059 1.25584i −0.958950 0.283577i $$-0.908479\pi$$
0.233890 0.972263i $$-0.424854\pi$$
$$458$$ 0 0
$$459$$ 2.00000 3.46410i 0.0933520 0.161690i
$$460$$ 0 0
$$461$$ 14.0000 0.652045 0.326023 0.945362i $$-0.394291\pi$$
0.326023 + 0.945362i $$0.394291\pi$$
$$462$$ 0 0
$$463$$ −16.0000 −0.743583 −0.371792 0.928316i $$-0.621256\pi$$
−0.371792 + 0.928316i $$0.621256\pi$$
$$464$$ 0 0
$$465$$ −1.50000 + 2.59808i −0.0695608 + 0.120483i
$$466$$ 0 0
$$467$$ 10.0000 + 17.3205i 0.462745 + 0.801498i 0.999097 0.0424970i $$-0.0135313\pi$$
−0.536352 + 0.843995i $$0.680198\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 2.00000 + 3.46410i 0.0921551 + 0.159617i
$$472$$ 0 0
$$473$$ −5.00000 + 8.66025i −0.229900 + 0.398199i
$$474$$ 0 0
$$475$$ −32.0000 −1.46826
$$476$$ 0 0
$$477$$ −9.00000 −0.412082
$$478$$ 0 0
$$479$$ −19.0000 + 32.9090i −0.868132 + 1.50365i −0.00422900 + 0.999991i $$0.501346\pi$$
−0.863903 + 0.503658i $$0.831987\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −3.50000 6.06218i −0.158927 0.275269i
$$486$$ 0 0
$$487$$ 2.50000 4.33013i 0.113286 0.196217i −0.803807 0.594890i $$-0.797196\pi$$
0.917093 + 0.398673i $$0.130529\pi$$
$$488$$ 0 0
$$489$$ −4.00000 −0.180886
$$490$$ 0 0
$$491$$ −9.00000 −0.406164 −0.203082 0.979162i $$-0.565096\pi$$
−0.203082 + 0.979162i $$0.565096\pi$$
$$492$$ 0 0
$$493$$ 10.0000 17.3205i 0.450377 0.780076i
$$494$$ 0 0
$$495$$ −2.50000 4.33013i −0.112367 0.194625i
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 5.00000 + 8.66025i 0.223831 + 0.387686i 0.955968 0.293471i $$-0.0948104\pi$$
−0.732137 + 0.681157i $$0.761477\pi$$
$$500$$ 0 0
$$501$$ −7.00000 + 12.1244i −0.312737 + 0.541676i
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ 10.0000 0.444994
$$506$$ 0 0
$$507$$ −6.50000 + 11.2583i −0.288675 + 0.500000i
$$508$$ 0 0
$$509$$ 7.50000 + 12.9904i 0.332432 + 0.575789i 0.982988 0.183669i $$-0.0587976\pi$$
−0.650556 + 0.759458i $$0.725464\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 4.00000 + 6.92820i 0.176604 + 0.305888i
$$514$$ 0 0
$$515$$ 4.00000 6.92820i 0.176261 0.305293i
$$516$$ 0 0
$$517$$ 30.0000 1.31940
$$518$$ 0 0
$$519$$ 22.0000 0.965693
$$520$$ 0 0
$$521$$ −9.00000 + 15.5885i −0.394297 + 0.682943i −0.993011 0.118020i $$-0.962345\pi$$
0.598714 + 0.800963i $$0.295679\pi$$
$$522$$ 0 0
$$523$$ −4.00000 6.92820i −0.174908 0.302949i 0.765222 0.643767i $$-0.222629\pi$$
−0.940129 + 0.340818i $$0.889296\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −6.00000 10.3923i −0.261364 0.452696i
$$528$$ 0 0
$$529$$ 3.50000 6.06218i 0.152174 0.263573i
$$530$$ 0 0
$$531$$ −11.0000 −0.477359
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ −1.50000 + 2.59808i −0.0648507 + 0.112325i
$$536$$ 0 0
$$537$$ −6.00000 10.3923i −0.258919 0.448461i
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 9.00000 + 15.5885i 0.386940 + 0.670200i 0.992036 0.125952i $$-0.0401986\pi$$
−0.605096 + 0.796152i $$0.706865\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 2.00000 0.0856706
$$546$$ 0 0
$$547$$ 12.0000 0.513083 0.256541 0.966533i $$-0.417417\pi$$
0.256541 + 0.966533i $$0.417417\pi$$
$$548$$ 0 0
$$549$$ −3.00000 + 5.19615i −0.128037 + 0.221766i
$$550$$ 0 0
$$551$$ 20.0000 + 34.6410i 0.852029 + 1.47576i
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 2.00000 + 3.46410i 0.0848953 + 0.147043i
$$556$$ 0 0
$$557$$ 11.5000 19.9186i 0.487271 0.843978i −0.512622 0.858614i $$-0.671326\pi$$
0.999893 + 0.0146368i $$0.00465919\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 20.0000 0.844401
$$562$$ 0 0
$$563$$ −8.50000 + 14.7224i −0.358232 + 0.620477i −0.987666 0.156578i $$-0.949954\pi$$
0.629433 + 0.777055i $$0.283287\pi$$
$$564$$ 0 0
$$565$$ 8.00000 + 13.8564i 0.336563 + 0.582943i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −12.0000 20.7846i −0.503066 0.871336i −0.999994 0.00354413i $$-0.998872\pi$$
0.496928 0.867792i $$-0.334461\pi$$
$$570$$ 0 0
$$571$$ −15.0000 + 25.9808i −0.627730 + 1.08726i 0.360276 + 0.932846i $$0.382683\pi$$
−0.988006 + 0.154415i $$0.950651\pi$$
$$572$$ 0 0
$$573$$ 24.0000 1.00261
$$574$$ 0 0
$$575$$ −16.0000 −0.667246
$$576$$ 0 0
$$577$$ 15.5000 26.8468i 0.645273 1.11765i −0.338965 0.940799i $$-0.610077\pi$$
0.984238 0.176847i $$-0.0565899\pi$$
$$578$$ 0 0
$$579$$ 2.50000 + 4.33013i 0.103896 + 0.179954i
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −22.5000 38.9711i −0.931855 1.61402i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 35.0000 1.44460 0.722302 0.691577i $$-0.243084\pi$$
0.722302 + 0.691577i $$0.243084\pi$$
$$588$$ 0 0
$$589$$ 24.0000 0.988903
$$590$$ 0 0
$$591$$ 1.00000 1.73205i 0.0411345 0.0712470i
$$592$$ 0 0
$$593$$ 18.0000 + 31.1769i 0.739171 + 1.28028i 0.952869 + 0.303383i $$0.0981160\pi$$
−0.213697 + 0.976900i $$0.568551\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −2.00000 3.46410i −0.0818546 0.141776i
$$598$$ 0 0
$$599$$ −15.0000 + 25.9808i −0.612883 + 1.06155i 0.377869 + 0.925859i $$0.376657\pi$$
−0.990752 + 0.135686i $$0.956676\pi$$
$$600$$ 0 0
$$601$$ −35.0000 −1.42768 −0.713840 0.700309i $$-0.753046\pi$$
−0.713840 + 0.700309i $$0.753046\pi$$
$$602$$ 0 0
$$603$$ 2.00000 0.0814463
$$604$$ 0 0
$$605$$ 7.00000 12.1244i 0.284590 0.492925i
$$606$$ 0 0
$$607$$ 13.5000 + 23.3827i 0.547948 + 0.949074i 0.998415 + 0.0562808i $$0.0179242\pi$$
−0.450467 + 0.892793i $$0.648742\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ −6.00000 + 10.3923i −0.242338 + 0.419741i −0.961380 0.275225i $$-0.911248\pi$$
0.719042 + 0.694967i $$0.244581\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 2.00000 0.0805170 0.0402585 0.999189i $$-0.487182\pi$$
0.0402585 + 0.999189i $$0.487182\pi$$
$$618$$ 0 0
$$619$$ −5.00000 + 8.66025i −0.200967 + 0.348085i −0.948840 0.315757i $$-0.897742\pi$$
0.747873 + 0.663842i $$0.231075\pi$$
$$620$$ 0 0
$$621$$ 2.00000 + 3.46410i 0.0802572 + 0.139010i
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −5.50000 9.52628i −0.220000 0.381051i
$$626$$ 0 0
$$627$$ −20.0000 + 34.6410i −0.798723 + 1.38343i
$$628$$ 0 0
$$629$$ −16.0000 −0.637962
$$630$$ 0 0
$$631$$ 19.0000 0.756378 0.378189 0.925728i $$-0.376547\pi$$
0.378189 + 0.925728i $$0.376547\pi$$
$$632$$ 0 0
$$633$$ −1.00000 + 1.73205i −0.0397464 + 0.0688428i
$$634$$ 0 0
$$635$$ −4.50000 7.79423i −0.178577 0.309305i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 1.00000 + 1.73205i 0.0395594 + 0.0685189i
$$640$$ 0 0
$$641$$ −13.0000 + 22.5167i −0.513469 + 0.889355i 0.486409 + 0.873731i $$0.338307\pi$$
−0.999878 + 0.0156233i $$0.995027\pi$$
$$642$$ 0 0
$$643$$ 14.0000 0.552106 0.276053 0.961142i $$-0.410973\pi$$
0.276053 + 0.961142i $$0.410973\pi$$
$$644$$ 0 0
$$645$$ −2.00000 −0.0787499
$$646$$ 0 0
$$647$$ 9.00000 15.5885i 0.353827 0.612845i −0.633090 0.774078i $$-0.718214\pi$$
0.986916 + 0.161233i $$0.0515470\pi$$
$$648$$ 0 0
$$649$$ −27.5000 47.6314i −1.07947 1.86970i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 19.5000 + 33.7750i 0.763094 + 1.32172i 0.941248 + 0.337715i $$0.109654\pi$$
−0.178154 + 0.984003i $$0.557013\pi$$
$$654$$ 0 0
$$655$$ 0.500000 0.866025i 0.0195366 0.0338384i
$$656$$ 0 0
$$657$$ −10.0000 −0.390137
$$658$$ 0 0
$$659$$ 40.0000 1.55818 0.779089 0.626913i $$-0.215682\pi$$
0.779089 + 0.626913i $$0.215682\pi$$
$$660$$ 0 0
$$661$$ 5.00000 8.66025i 0.194477 0.336845i −0.752252 0.658876i $$-0.771032\pi$$
0.946729 + 0.322031i $$0.104366\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 10.0000 + 17.3205i 0.387202 + 0.670653i
$$668$$ 0 0
$$669$$ −3.50000 + 6.06218i −0.135318 + 0.234377i
$$670$$ 0 0
$$671$$ −30.0000 −1.15814
$$672$$ 0 0
$$673$$ −19.0000 −0.732396 −0.366198 0.930537i $$-0.619341\pi$$
−0.366198 + 0.930537i $$0.619341\pi$$
$$674$$ 0 0
$$675$$ −2.00000 + 3.46410i −0.0769800 + 0.133333i
$$676$$ 0 0
$$677$$ −13.5000 23.3827i −0.518847 0.898670i −0.999760 0.0219013i $$-0.993028\pi$$
0.480913 0.876768i $$-0.340305\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 1.50000 + 2.59808i 0.0574801 + 0.0995585i
$$682$$ 0 0
$$683$$ −4.50000 + 7.79423i −0.172188 + 0.298238i −0.939184 0.343413i $$-0.888417\pi$$
0.766997 + 0.641651i $$0.221750\pi$$
$$684$$ 0 0
$$685$$ 2.00000 0.0764161
$$686$$ 0 0
$$687$$ −20.0000 −0.763048
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ −4.00000 6.92820i −0.152167 0.263561i 0.779857 0.625958i $$-0.215292\pi$$
−0.932024 + 0.362397i $$0.881959\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −7.00000 12.1244i −0.265525 0.459903i
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 4.00000 0.151294
$$700$$ 0 0
$$701$$ −5.00000 −0.188847 −0.0944237 0.995532i $$-0.530101\pi$$
−0.0944237 + 0.995532i $$0.530101\pi$$
$$702$$ 0 0
$$703$$ 16.0000 27.7128i 0.603451 1.04521i
$$704$$ 0 0
$$705$$ 3.00000 + 5.19615i 0.112987 + 0.195698i
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −19.0000 32.9090i −0.713560 1.23592i −0.963512 0.267664i $$-0.913748\pi$$
0.249952 0.968258i $$-0.419585\pi$$
$$710$$ 0 0
$$711$$ 1.50000 2.59808i 0.0562544 0.0974355i
$$712$$ 0 0
$$713$$ 12.0000 0.449404
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 6.00000 10.3923i 0.224074 0.388108i
$$718$$ 0 0
$$719$$ 3.00000 + 5.19615i 0.111881 + 0.193784i 0.916529 0.399969i $$-0.130979\pi$$
−0.804648 + 0.593753i $$0.797646\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 12.5000 + 21.6506i 0.464880 + 0.805196i
$$724$$ 0 0
$$725$$ −10.0000 + 17.3205i −0.371391 + 0.643268i
$$726$$ 0 0
$$727$$ 7.00000 0.259616 0.129808 0.991539i $$-0.458564\pi$$
0.129808 + 0.991539i $$0.458564\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ 0 0
$$731$$ 4.00000 6.92820i 0.147945 0.256249i
$$732$$ 0 0
$$733$$ −3.00000 5.19615i −0.110808 0.191924i 0.805289 0.592883i $$-0.202010\pi$$
−0.916096 + 0.400959i $$0.868677\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 5.00000 + 8.66025i 0.184177 + 0.319005i
$$738$$ 0 0
$$739$$ −15.0000 + 25.9808i −0.551784 + 0.955718i 0.446362 + 0.894852i $$0.352719\pi$$
−0.998146 + 0.0608653i $$0.980614\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −30.0000 −1.10059 −0.550297 0.834969i $$-0.685485\pi$$
−0.550297 + 0.834969i $$0.685485\pi$$
$$744$$ 0 0
$$745$$ −9.00000 + 15.5885i −0.329734 + 0.571117i
$$746$$ 0 0
$$747$$ 3.50000 + 6.06218i 0.128058 + 0.221803i
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 22.5000 + 38.9711i 0.821037 + 1.42208i 0.904911 + 0.425601i $$0.139937\pi$$
−0.0838743 + 0.996476i $$0.526729\pi$$
$$752$$ 0 0
$$753$$ 10.5000 18.1865i 0.382641 0.662754i
$$754$$ 0 0
$$755$$ 19.0000 0.691481
$$756$$ 0 0
$$757$$ −54.0000 −1.96266 −0.981332 0.192323i $$-0.938398\pi$$
−0.981332 + 0.192323i $$0.938398\pi$$
$$758$$ 0 0
$$759$$ −10.0000 + 17.3205i −0.362977 + 0.628695i
$$760$$ 0 0
$$761$$ 4.00000 + 6.92820i 0.145000 + 0.251147i 0.929373 0.369142i $$-0.120348\pi$$
−0.784373 + 0.620289i $$0.787015\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 2.00000 + 3.46410i 0.0723102 + 0.125245i
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 35.0000 1.26213 0.631066 0.775729i $$-0.282618\pi$$
0.631066 + 0.775729i $$0.282618\pi$$
$$770$$ 0 0
$$771$$ −6.00000 −0.216085
$$772$$ 0 0
$$773$$ 5.00000 8.66025i 0.179838 0.311488i −0.761987 0.647592i $$-0.775776\pi$$
0.941825 + 0.336104i $$0.109109\pi$$
$$774$$ 0 0
$$775$$ 6.00000 + 10.3923i 0.215526 + 0.373303i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ −5.00000 + 8.66025i −0.178914 + 0.309888i
$$782$$ 0 0
$$783$$ 5.00000 0.178685
$$784$$ 0 0
$$785$$ −4.00000 −0.142766
$$786$$ 0 0
$$787$$ 9.00000 15.5885i 0.320815 0.555668i −0.659841 0.751405i $$-0.729376\pi$$
0.980656 + 0.195737i $$0.0627098\pi$$
$$788$$ 0 0
$$789$$ 15.0000 + 25.9808i 0.534014 + 0.924940i
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 4.50000 7.79423i 0.159599 0.276433i
$$796$$ 0 0
$$797$$ −21.0000 −0.743858 −0.371929 0.928261i $$-0.621304\pi$$
−0.371929 + 0.928261i $$0.621304\pi$$
$$798$$ 0 0
$$799$$ −24.0000 −0.849059
$$800$$ 0 0
$$801$$ −3.00000 + 5.19615i −0.106000 + 0.183597i
$$802$$ 0