Properties

Label 2352.2.q.u
Level 2352
Weight 2
Character orbit 2352.q
Analytic conductor 18.781
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{3} + \zeta_{6} q^{5} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{3} + \zeta_{6} q^{5} -\zeta_{6} q^{9} + ( 5 - 5 \zeta_{6} ) q^{11} + q^{15} + ( -4 + 4 \zeta_{6} ) q^{17} -8 \zeta_{6} q^{19} -4 \zeta_{6} q^{23} + ( 4 - 4 \zeta_{6} ) q^{25} - q^{27} -5 q^{29} + ( -3 + 3 \zeta_{6} ) q^{31} -5 \zeta_{6} q^{33} + 4 \zeta_{6} q^{37} -2 q^{43} + ( 1 - \zeta_{6} ) q^{45} + 6 \zeta_{6} q^{47} + 4 \zeta_{6} q^{51} + ( 9 - 9 \zeta_{6} ) q^{53} + 5 q^{55} -8 q^{57} + ( 11 - 11 \zeta_{6} ) q^{59} -6 \zeta_{6} q^{61} + ( -2 + 2 \zeta_{6} ) q^{67} -4 q^{69} -2 q^{71} + ( 10 - 10 \zeta_{6} ) q^{73} -4 \zeta_{6} q^{75} + 3 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} -7 q^{83} -4 q^{85} + ( -5 + 5 \zeta_{6} ) q^{87} -6 \zeta_{6} q^{89} + 3 \zeta_{6} q^{93} + ( 8 - 8 \zeta_{6} ) q^{95} -7 q^{97} -5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{3} + q^{5} - q^{9} + O(q^{10}) \) \( 2q + q^{3} + q^{5} - q^{9} + 5q^{11} + 2q^{15} - 4q^{17} - 8q^{19} - 4q^{23} + 4q^{25} - 2q^{27} - 10q^{29} - 3q^{31} - 5q^{33} + 4q^{37} - 4q^{43} + q^{45} + 6q^{47} + 4q^{51} + 9q^{53} + 10q^{55} - 16q^{57} + 11q^{59} - 6q^{61} - 2q^{67} - 8q^{69} - 4q^{71} + 10q^{73} - 4q^{75} + 3q^{79} - q^{81} - 14q^{83} - 8q^{85} - 5q^{87} - 6q^{89} + 3q^{93} + 8q^{95} - 14q^{97} - 10q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
961.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0.500000 + 0.866025i 0 0.500000 0.866025i 0 0 0 −0.500000 + 0.866025i 0
1537.1 0 0.500000 0.866025i 0 0.500000 + 0.866025i 0 0 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.2.q.u 2
4.b odd 2 1 294.2.e.b 2
7.b odd 2 1 336.2.q.b 2
7.c even 3 1 2352.2.a.f 1
7.c even 3 1 inner 2352.2.q.u 2
7.d odd 6 1 336.2.q.b 2
7.d odd 6 1 2352.2.a.t 1
12.b even 2 1 882.2.g.i 2
21.c even 2 1 1008.2.s.k 2
21.g even 6 1 1008.2.s.k 2
21.g even 6 1 7056.2.a.w 1
21.h odd 6 1 7056.2.a.bl 1
28.d even 2 1 42.2.e.a 2
28.f even 6 1 42.2.e.a 2
28.f even 6 1 294.2.a.e 1
28.g odd 6 1 294.2.a.f 1
28.g odd 6 1 294.2.e.b 2
56.e even 2 1 1344.2.q.g 2
56.h odd 2 1 1344.2.q.s 2
56.j odd 6 1 1344.2.q.s 2
56.j odd 6 1 9408.2.a.q 1
56.k odd 6 1 9408.2.a.z 1
56.m even 6 1 1344.2.q.g 2
56.m even 6 1 9408.2.a.ce 1
56.p even 6 1 9408.2.a.cr 1
84.h odd 2 1 126.2.g.c 2
84.j odd 6 1 126.2.g.c 2
84.j odd 6 1 882.2.a.c 1
84.n even 6 1 882.2.a.d 1
84.n even 6 1 882.2.g.i 2
140.c even 2 1 1050.2.i.l 2
140.j odd 4 2 1050.2.o.a 4
140.p odd 6 1 7350.2.a.q 1
140.s even 6 1 1050.2.i.l 2
140.s even 6 1 7350.2.a.bl 1
140.x odd 12 2 1050.2.o.a 4
252.n even 6 1 1134.2.e.l 2
252.r odd 6 1 1134.2.h.l 2
252.s odd 6 1 1134.2.e.e 2
252.s odd 6 1 1134.2.h.l 2
252.bi even 6 1 1134.2.e.l 2
252.bi even 6 1 1134.2.h.e 2
252.bj even 6 1 1134.2.h.e 2
252.bn odd 6 1 1134.2.e.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.e.a 2 28.d even 2 1
42.2.e.a 2 28.f even 6 1
126.2.g.c 2 84.h odd 2 1
126.2.g.c 2 84.j odd 6 1
294.2.a.e 1 28.f even 6 1
294.2.a.f 1 28.g odd 6 1
294.2.e.b 2 4.b odd 2 1
294.2.e.b 2 28.g odd 6 1
336.2.q.b 2 7.b odd 2 1
336.2.q.b 2 7.d odd 6 1
882.2.a.c 1 84.j odd 6 1
882.2.a.d 1 84.n even 6 1
882.2.g.i 2 12.b even 2 1
882.2.g.i 2 84.n even 6 1
1008.2.s.k 2 21.c even 2 1
1008.2.s.k 2 21.g even 6 1
1050.2.i.l 2 140.c even 2 1
1050.2.i.l 2 140.s even 6 1
1050.2.o.a 4 140.j odd 4 2
1050.2.o.a 4 140.x odd 12 2
1134.2.e.e 2 252.s odd 6 1
1134.2.e.e 2 252.bn odd 6 1
1134.2.e.l 2 252.n even 6 1
1134.2.e.l 2 252.bi even 6 1
1134.2.h.e 2 252.bi even 6 1
1134.2.h.e 2 252.bj even 6 1
1134.2.h.l 2 252.r odd 6 1
1134.2.h.l 2 252.s odd 6 1
1344.2.q.g 2 56.e even 2 1
1344.2.q.g 2 56.m even 6 1
1344.2.q.s 2 56.h odd 2 1
1344.2.q.s 2 56.j odd 6 1
2352.2.a.f 1 7.c even 3 1
2352.2.a.t 1 7.d odd 6 1
2352.2.q.u 2 1.a even 1 1 trivial
2352.2.q.u 2 7.c even 3 1 inner
7056.2.a.w 1 21.g even 6 1
7056.2.a.bl 1 21.h odd 6 1
7350.2.a.q 1 140.p odd 6 1
7350.2.a.bl 1 140.s even 6 1
9408.2.a.q 1 56.j odd 6 1
9408.2.a.z 1 56.k odd 6 1
9408.2.a.ce 1 56.m even 6 1
9408.2.a.cr 1 56.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2352, [\chi])\):

\( T_{5}^{2} - T_{5} + 1 \)
\( T_{11}^{2} - 5 T_{11} + 25 \)
\( T_{13} \)
\( T_{17}^{2} + 4 T_{17} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - T + T^{2} \)
$5$ \( 1 - T - 4 T^{2} - 5 T^{3} + 25 T^{4} \)
$7$ 1
$11$ \( 1 - 5 T + 14 T^{2} - 55 T^{3} + 121 T^{4} \)
$13$ \( ( 1 + 13 T^{2} )^{2} \)
$17$ \( 1 + 4 T - T^{2} + 68 T^{3} + 289 T^{4} \)
$19$ \( ( 1 + T + 19 T^{2} )( 1 + 7 T + 19 T^{2} ) \)
$23$ \( 1 + 4 T - 7 T^{2} + 92 T^{3} + 529 T^{4} \)
$29$ \( ( 1 + 5 T + 29 T^{2} )^{2} \)
$31$ \( 1 + 3 T - 22 T^{2} + 93 T^{3} + 961 T^{4} \)
$37$ \( 1 - 4 T - 21 T^{2} - 148 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 + 41 T^{2} )^{2} \)
$43$ \( ( 1 + 2 T + 43 T^{2} )^{2} \)
$47$ \( 1 - 6 T - 11 T^{2} - 282 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 9 T + 28 T^{2} - 477 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 11 T + 62 T^{2} - 649 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 6 T - 25 T^{2} + 366 T^{3} + 3721 T^{4} \)
$67$ \( 1 + 2 T - 63 T^{2} + 134 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 2 T + 71 T^{2} )^{2} \)
$73$ \( ( 1 - 17 T + 73 T^{2} )( 1 + 7 T + 73 T^{2} ) \)
$79$ \( 1 - 3 T - 70 T^{2} - 237 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 + 7 T + 83 T^{2} )^{2} \)
$89$ \( 1 + 6 T - 53 T^{2} + 534 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 + 7 T + 97 T^{2} )^{2} \)
show more
show less