Properties

Label 2352.2.q.i.1537.1
Level $2352$
Weight $2$
Character 2352.1537
Analytic conductor $18.781$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1537.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2352.1537
Dual form 2352.2.q.i.961.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(1.00000 + 1.73205i) q^{5} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{3} +(1.00000 + 1.73205i) q^{5} +(-0.500000 - 0.866025i) q^{9} +(-2.00000 + 3.46410i) q^{11} +6.00000 q^{13} -2.00000 q^{15} +(-1.00000 + 1.73205i) q^{17} +(-2.00000 - 3.46410i) q^{19} +(4.00000 + 6.92820i) q^{23} +(0.500000 - 0.866025i) q^{25} +1.00000 q^{27} -2.00000 q^{29} +(-2.00000 - 3.46410i) q^{33} +(5.00000 + 8.66025i) q^{37} +(-3.00000 + 5.19615i) q^{39} -6.00000 q^{41} +4.00000 q^{43} +(1.00000 - 1.73205i) q^{45} +(-1.00000 - 1.73205i) q^{51} +(-3.00000 + 5.19615i) q^{53} -8.00000 q^{55} +4.00000 q^{57} +(2.00000 - 3.46410i) q^{59} +(-3.00000 - 5.19615i) q^{61} +(6.00000 + 10.3923i) q^{65} +(2.00000 - 3.46410i) q^{67} -8.00000 q^{69} -8.00000 q^{71} +(-5.00000 + 8.66025i) q^{73} +(0.500000 + 0.866025i) q^{75} +(-0.500000 + 0.866025i) q^{81} +4.00000 q^{83} -4.00000 q^{85} +(1.00000 - 1.73205i) q^{87} +(3.00000 + 5.19615i) q^{89} +(4.00000 - 6.92820i) q^{95} -14.0000 q^{97} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{3} + 2q^{5} - q^{9} + O(q^{10}) \) \( 2q - q^{3} + 2q^{5} - q^{9} - 4q^{11} + 12q^{13} - 4q^{15} - 2q^{17} - 4q^{19} + 8q^{23} + q^{25} + 2q^{27} - 4q^{29} - 4q^{33} + 10q^{37} - 6q^{39} - 12q^{41} + 8q^{43} + 2q^{45} - 2q^{51} - 6q^{53} - 16q^{55} + 8q^{57} + 4q^{59} - 6q^{61} + 12q^{65} + 4q^{67} - 16q^{69} - 16q^{71} - 10q^{73} + q^{75} - q^{81} + 8q^{83} - 8q^{85} + 2q^{87} + 6q^{89} + 8q^{95} - 28q^{97} + 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 1.00000 + 1.73205i 0.447214 + 0.774597i 0.998203 0.0599153i \(-0.0190830\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −2.00000 + 3.46410i −0.603023 + 1.04447i 0.389338 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123371i \(0.960630\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) −1.00000 + 1.73205i −0.242536 + 0.420084i −0.961436 0.275029i \(-0.911312\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) 0 0
\(19\) −2.00000 3.46410i −0.458831 0.794719i 0.540068 0.841621i \(-0.318398\pi\)
−0.998899 + 0.0469020i \(0.985065\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 + 6.92820i 0.834058 + 1.44463i 0.894795 + 0.446476i \(0.147321\pi\)
−0.0607377 + 0.998154i \(0.519345\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) 0 0
\(33\) −2.00000 3.46410i −0.348155 0.603023i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 + 8.66025i 0.821995 + 1.42374i 0.904194 + 0.427121i \(0.140472\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) −3.00000 + 5.19615i −0.480384 + 0.832050i
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 1.00000 1.73205i 0.149071 0.258199i
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.00000 1.73205i −0.140028 0.242536i
\(52\) 0 0
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 0 0
\(61\) −3.00000 5.19615i −0.384111 0.665299i 0.607535 0.794293i \(-0.292159\pi\)
−0.991645 + 0.128994i \(0.958825\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 + 10.3923i 0.744208 + 1.28901i
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 0 0
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −5.00000 + 8.66025i −0.585206 + 1.01361i 0.409644 + 0.912245i \(0.365653\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 0 0
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) 1.00000 1.73205i 0.107211 0.185695i
\(88\) 0 0
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 6.92820i 0.410391 0.710819i
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 1.00000 1.73205i 0.0995037 0.172345i −0.811976 0.583691i \(-0.801608\pi\)
0.911479 + 0.411346i \(0.134941\pi\)
\(102\) 0 0
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 0 0
\(109\) 1.00000 1.73205i 0.0957826 0.165900i −0.814152 0.580651i \(-0.802798\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) −8.00000 + 13.8564i −0.746004 + 1.29212i
\(116\) 0 0
\(117\) −3.00000 5.19615i −0.277350 0.480384i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 0 0
\(123\) 3.00000 5.19615i 0.270501 0.468521i
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −2.00000 + 3.46410i −0.176090 + 0.304997i
\(130\) 0 0
\(131\) −10.0000 17.3205i −0.873704 1.51330i −0.858137 0.513421i \(-0.828378\pi\)
−0.0155672 0.999879i \(-0.504955\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000 + 1.73205i 0.0860663 + 0.149071i
\(136\) 0 0
\(137\) −5.00000 + 8.66025i −0.427179 + 0.739895i −0.996621 0.0821359i \(-0.973826\pi\)
0.569442 + 0.822031i \(0.307159\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.0000 + 20.7846i −1.00349 + 1.73810i
\(144\) 0 0
\(145\) −2.00000 3.46410i −0.166091 0.287678i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) −4.00000 + 6.92820i −0.325515 + 0.563809i −0.981617 0.190864i \(-0.938871\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.00000 8.66025i 0.399043 0.691164i −0.594565 0.804048i \(-0.702676\pi\)
0.993608 + 0.112884i \(0.0360089\pi\)
\(158\) 0 0
\(159\) −3.00000 5.19615i −0.237915 0.412082i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 10.0000 + 17.3205i 0.783260 + 1.35665i 0.930033 + 0.367477i \(0.119778\pi\)
−0.146772 + 0.989170i \(0.546888\pi\)
\(164\) 0 0
\(165\) 4.00000 6.92820i 0.311400 0.539360i
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) −2.00000 + 3.46410i −0.152944 + 0.264906i
\(172\) 0 0
\(173\) −11.0000 19.0526i −0.836315 1.44854i −0.892956 0.450145i \(-0.851372\pi\)
0.0566411 0.998395i \(-0.481961\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.00000 + 3.46410i 0.150329 + 0.260378i
\(178\) 0 0
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 0 0
\(185\) −10.0000 + 17.3205i −0.735215 + 1.27343i
\(186\) 0 0
\(187\) −4.00000 6.92820i −0.292509 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) −1.00000 + 1.73205i −0.0719816 + 0.124676i −0.899770 0.436365i \(-0.856266\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) 0 0
\(195\) −12.0000 −0.859338
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) 4.00000 6.92820i 0.283552 0.491127i −0.688705 0.725042i \(-0.741820\pi\)
0.972257 + 0.233915i \(0.0751537\pi\)
\(200\) 0 0
\(201\) 2.00000 + 3.46410i 0.141069 + 0.244339i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.00000 10.3923i −0.419058 0.725830i
\(206\) 0 0
\(207\) 4.00000 6.92820i 0.278019 0.481543i
\(208\) 0 0
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 4.00000 6.92820i 0.274075 0.474713i
\(214\) 0 0
\(215\) 4.00000 + 6.92820i 0.272798 + 0.472500i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −5.00000 8.66025i −0.337869 0.585206i
\(220\) 0 0
\(221\) −6.00000 + 10.3923i −0.403604 + 0.699062i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 6.00000 10.3923i 0.398234 0.689761i −0.595274 0.803523i \(-0.702957\pi\)
0.993508 + 0.113761i \(0.0362899\pi\)
\(228\) 0 0
\(229\) 1.00000 + 1.73205i 0.0660819 + 0.114457i 0.897173 0.441679i \(-0.145617\pi\)
−0.831092 + 0.556136i \(0.812283\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.0000 + 19.0526i 0.720634 + 1.24817i 0.960746 + 0.277429i \(0.0894825\pi\)
−0.240112 + 0.970745i \(0.577184\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −1.00000 + 1.73205i −0.0644157 + 0.111571i −0.896435 0.443176i \(-0.853852\pi\)
0.832019 + 0.554747i \(0.187185\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −12.0000 20.7846i −0.763542 1.32249i
\(248\) 0 0
\(249\) −2.00000 + 3.46410i −0.126745 + 0.219529i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −32.0000 −2.01182
\(254\) 0 0
\(255\) 2.00000 3.46410i 0.125245 0.216930i
\(256\) 0 0
\(257\) 15.0000 + 25.9808i 0.935674 + 1.62064i 0.773427 + 0.633885i \(0.218541\pi\)
0.162247 + 0.986750i \(0.448126\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.00000 + 1.73205i 0.0618984 + 0.107211i
\(262\) 0 0
\(263\) −12.0000 + 20.7846i −0.739952 + 1.28163i 0.212565 + 0.977147i \(0.431818\pi\)
−0.952517 + 0.304487i \(0.901515\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) −11.0000 + 19.0526i −0.670682 + 1.16166i 0.307029 + 0.951700i \(0.400665\pi\)
−0.977711 + 0.209955i \(0.932668\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000 + 3.46410i 0.120605 + 0.208893i
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) 0 0
\(285\) 4.00000 + 6.92820i 0.236940 + 0.410391i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 0 0
\(291\) 7.00000 12.1244i 0.410347 0.710742i
\(292\) 0 0
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 0 0
\(297\) −2.00000 + 3.46410i −0.116052 + 0.201008i
\(298\) 0 0
\(299\) 24.0000 + 41.5692i 1.38796 + 2.40401i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.00000 + 1.73205i 0.0574485 + 0.0995037i
\(304\) 0 0
\(305\) 6.00000 10.3923i 0.343559 0.595062i
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −4.00000 + 6.92820i −0.226819 + 0.392862i −0.956864 0.290537i \(-0.906166\pi\)
0.730044 + 0.683400i \(0.239499\pi\)
\(312\) 0 0
\(313\) −5.00000 8.66025i −0.282617 0.489506i 0.689412 0.724370i \(-0.257869\pi\)
−0.972028 + 0.234863i \(0.924536\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) 4.00000 6.92820i 0.223957 0.387905i
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) 3.00000 5.19615i 0.166410 0.288231i
\(326\) 0 0
\(327\) 1.00000 + 1.73205i 0.0553001 + 0.0957826i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.00000 3.46410i −0.109930 0.190404i 0.805812 0.592172i \(-0.201729\pi\)
−0.915742 + 0.401768i \(0.868396\pi\)
\(332\) 0 0
\(333\) 5.00000 8.66025i 0.273998 0.474579i
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0 0
\(339\) 7.00000 12.1244i 0.380188 0.658505i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −8.00000 13.8564i −0.430706 0.746004i
\(346\) 0 0
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) 22.0000 1.17763 0.588817 0.808267i \(-0.299594\pi\)
0.588817 + 0.808267i \(0.299594\pi\)
\(350\) 0 0
\(351\) 6.00000 0.320256
\(352\) 0 0
\(353\) 15.0000 25.9808i 0.798369 1.38282i −0.122308 0.992492i \(-0.539030\pi\)
0.920677 0.390324i \(-0.127637\pi\)
\(354\) 0 0
\(355\) −8.00000 13.8564i −0.424596 0.735422i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.00000 6.92820i −0.211112 0.365657i 0.740951 0.671559i \(-0.234375\pi\)
−0.952063 + 0.305903i \(0.901042\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 0 0
\(363\) 5.00000 0.262432
\(364\) 0 0
\(365\) −20.0000 −1.04685
\(366\) 0 0
\(367\) 16.0000 27.7128i 0.835193 1.44660i −0.0586798 0.998277i \(-0.518689\pi\)
0.893873 0.448320i \(-0.147978\pi\)
\(368\) 0 0
\(369\) 3.00000 + 5.19615i 0.156174 + 0.270501i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) −6.00000 + 10.3923i −0.309839 + 0.536656i
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.00000 13.8564i −0.408781 0.708029i 0.585973 0.810331i \(-0.300713\pi\)
−0.994753 + 0.102302i \(0.967379\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.00000 3.46410i −0.101666 0.176090i
\(388\) 0 0
\(389\) 13.0000 22.5167i 0.659126 1.14164i −0.321716 0.946836i \(-0.604260\pi\)
0.980842 0.194804i \(-0.0624070\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 20.0000 1.00887
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3.00000 5.19615i −0.150566 0.260787i 0.780870 0.624694i \(-0.214776\pi\)
−0.931436 + 0.363906i \(0.881443\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.00000 −0.0993808
\(406\) 0 0
\(407\) −40.0000 −1.98273
\(408\) 0 0
\(409\) 11.0000 19.0526i 0.543915 0.942088i −0.454759 0.890614i \(-0.650275\pi\)
0.998674 0.0514740i \(-0.0163919\pi\)
\(410\) 0 0
\(411\) −5.00000 8.66025i −0.246632 0.427179i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 + 6.92820i 0.196352 + 0.340092i
\(416\) 0 0
\(417\) 2.00000 3.46410i 0.0979404 0.169638i
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.00000 + 1.73205i 0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −12.0000 20.7846i −0.579365 1.00349i
\(430\) 0 0
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 4.00000 0.191785
\(436\) 0 0
\(437\) 16.0000 27.7128i 0.765384 1.32568i
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.00000 3.46410i −0.0950229 0.164584i 0.814595 0.580030i \(-0.196959\pi\)
−0.909618 + 0.415445i \(0.863626\pi\)
\(444\) 0 0
\(445\) −6.00000 + 10.3923i −0.284427 + 0.492642i
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) 0 0
\(451\) 12.0000 20.7846i 0.565058 0.978709i
\(452\) 0 0
\(453\) −4.00000 6.92820i −0.187936 0.325515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.00000 8.66025i −0.233890 0.405110i 0.725059 0.688686i \(-0.241812\pi\)
−0.958950 + 0.283577i \(0.908479\pi\)
\(458\) 0 0
\(459\) −1.00000 + 1.73205i −0.0466760 + 0.0808452i
\(460\) 0 0
\(461\) 22.0000 1.02464 0.512321 0.858794i \(-0.328786\pi\)
0.512321 + 0.858794i \(0.328786\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.0000 + 24.2487i 0.647843 + 1.12210i 0.983637 + 0.180161i \(0.0576619\pi\)
−0.335794 + 0.941935i \(0.609005\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.00000 + 8.66025i 0.230388 + 0.399043i
\(472\) 0 0
\(473\) −8.00000 + 13.8564i −0.367840 + 0.637118i
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −8.00000 + 13.8564i −0.365529 + 0.633115i −0.988861 0.148842i \(-0.952445\pi\)
0.623332 + 0.781958i \(0.285779\pi\)
\(480\) 0 0
\(481\) 30.0000 + 51.9615i 1.36788 + 2.36924i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.0000 24.2487i −0.635707 1.10108i
\(486\) 0 0
\(487\) 4.00000 6.92820i 0.181257 0.313947i −0.761052 0.648691i \(-0.775317\pi\)
0.942309 + 0.334744i \(0.108650\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 2.00000 3.46410i 0.0900755 0.156015i
\(494\) 0 0
\(495\) 4.00000 + 6.92820i 0.179787 + 0.311400i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −22.0000 38.1051i −0.984855 1.70582i −0.642578 0.766220i \(-0.722135\pi\)
−0.342277 0.939599i \(-0.611198\pi\)
\(500\) 0 0
\(501\) −4.00000 + 6.92820i −0.178707 + 0.309529i
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 4.00000 0.177998
\(506\) 0 0
\(507\) −11.5000 + 19.9186i −0.510733 + 0.884615i
\(508\) 0 0
\(509\) −3.00000 5.19615i −0.132973 0.230315i 0.791849 0.610718i \(-0.209119\pi\)
−0.924821 + 0.380402i \(0.875786\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.00000 3.46410i −0.0883022 0.152944i
\(514\) 0 0
\(515\) −8.00000 + 13.8564i −0.352522 + 0.610586i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) 3.00000 5.19615i 0.131432 0.227648i −0.792797 0.609486i \(-0.791376\pi\)
0.924229 + 0.381839i \(0.124709\pi\)
\(522\) 0 0
\(523\) 10.0000 + 17.3205i 0.437269 + 0.757373i 0.997478 0.0709788i \(-0.0226123\pi\)
−0.560208 + 0.828352i \(0.689279\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −20.5000 + 35.5070i −0.891304 + 1.54378i
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) −36.0000 −1.55933
\(534\) 0 0
\(535\) −12.0000 + 20.7846i −0.518805 + 0.898597i
\(536\) 0 0
\(537\) −6.00000 10.3923i −0.258919 0.448461i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −15.0000 25.9808i −0.644900 1.11700i −0.984325 0.176367i \(-0.943566\pi\)
0.339424 0.940633i \(-0.389768\pi\)
\(542\) 0 0
\(543\) 9.00000 15.5885i 0.386227 0.668965i
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 0 0
\(549\) −3.00000 + 5.19615i −0.128037 + 0.221766i
\(550\) 0 0
\(551\) 4.00000 + 6.92820i 0.170406 + 0.295151i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −10.0000 17.3205i −0.424476 0.735215i
\(556\) 0 0
\(557\) 1.00000 1.73205i 0.0423714 0.0733893i −0.844062 0.536246i \(-0.819842\pi\)
0.886433 + 0.462856i \(0.153175\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) 22.0000 38.1051i 0.927189 1.60594i 0.139188 0.990266i \(-0.455551\pi\)
0.788002 0.615673i \(-0.211116\pi\)
\(564\) 0 0
\(565\) −14.0000 24.2487i −0.588984 1.02015i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) 6.00000 10.3923i 0.251092 0.434904i −0.712735 0.701434i \(-0.752544\pi\)
0.963827 + 0.266529i \(0.0858769\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) −17.0000 + 29.4449i −0.707719 + 1.22581i 0.257982 + 0.966150i \(0.416942\pi\)
−0.965701 + 0.259656i \(0.916391\pi\)
\(578\) 0 0
\(579\) −1.00000 1.73205i −0.0415586 0.0719816i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −12.0000 20.7846i −0.496989 0.860811i
\(584\) 0 0
\(585\) 6.00000 10.3923i 0.248069 0.429669i
\(586\) 0 0
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 5.00000 8.66025i 0.205673 0.356235i
\(592\) 0 0
\(593\) −9.00000 15.5885i −0.369586 0.640141i 0.619915 0.784669i \(-0.287167\pi\)
−0.989501 + 0.144528i \(0.953834\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.00000 + 6.92820i 0.163709 + 0.283552i
\(598\) 0 0
\(599\) 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i \(-0.670218\pi\)
0.999938 + 0.0111569i \(0.00355143\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) 5.00000 8.66025i 0.203279 0.352089i
\(606\) 0 0
\(607\) 24.0000 + 41.5692i 0.974130 + 1.68724i 0.682777 + 0.730627i \(0.260772\pi\)
0.291353 + 0.956616i \(0.405895\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 21.0000 36.3731i 0.848182 1.46909i −0.0346469 0.999400i \(-0.511031\pi\)
0.882829 0.469695i \(-0.155636\pi\)
\(614\) 0 0
\(615\) 12.0000 0.483887
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) −22.0000 + 38.1051i −0.884255 + 1.53157i −0.0376891 + 0.999290i \(0.512000\pi\)
−0.846566 + 0.532284i \(0.821334\pi\)
\(620\) 0 0
\(621\) 4.00000 + 6.92820i 0.160514 + 0.278019i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) −8.00000 + 13.8564i −0.319489 + 0.553372i
\(628\) 0 0
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) 10.0000 17.3205i 0.397464 0.688428i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 4.00000 + 6.92820i 0.158238 + 0.274075i
\(640\) 0 0
\(641\) −1.00000 + 1.73205i −0.0394976 + 0.0684119i −0.885098 0.465404i \(-0.845909\pi\)
0.845601 + 0.533816i \(0.179242\pi\)
\(642\) 0 0
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) 0 0
\(645\) −8.00000 −0.315000
\(646\) 0 0
\(647\) 12.0000 20.7846i 0.471769 0.817127i −0.527710 0.849425i \(-0.676949\pi\)
0.999478 + 0.0322975i \(0.0102824\pi\)
\(648\) 0 0
\(649\) 8.00000 + 13.8564i 0.314027 + 0.543912i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00000 + 15.5885i 0.352197 + 0.610023i 0.986634 0.162951i \(-0.0521013\pi\)
−0.634437 + 0.772975i \(0.718768\pi\)
\(654\) 0 0
\(655\) 20.0000 34.6410i 0.781465 1.35354i
\(656\) 0 0
\(657\) 10.0000 0.390137
\(658\) 0 0
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 0 0
\(661\) 1.00000 1.73205i 0.0388955 0.0673690i −0.845922 0.533306i \(-0.820949\pi\)
0.884818 + 0.465937i \(0.154283\pi\)
\(662\) 0 0
\(663\) −6.00000 10.3923i −0.233021 0.403604i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 13.8564i −0.309761 0.536522i
\(668\) 0 0
\(669\) −8.00000 + 13.8564i −0.309298 + 0.535720i
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) 2.00000 0.0770943 0.0385472 0.999257i \(-0.487727\pi\)
0.0385472 + 0.999257i \(0.487727\pi\)
\(674\) 0 0
\(675\) 0.500000 0.866025i 0.0192450 0.0333333i
\(676\) 0 0
\(677\) 9.00000 + 15.5885i 0.345898 + 0.599113i 0.985517 0.169580i \(-0.0542410\pi\)
−0.639618 + 0.768693i \(0.720908\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.00000 + 10.3923i 0.229920 + 0.398234i
\(682\) 0 0
\(683\) 6.00000 10.3923i 0.229584 0.397650i −0.728101 0.685470i \(-0.759597\pi\)
0.957685 + 0.287819i \(0.0929302\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) −2.00000 −0.0763048
\(688\) 0 0
\(689\) −18.0000 + 31.1769i −0.685745 + 1.18775i
\(690\) 0 0
\(691\) −2.00000 3.46410i −0.0760836 0.131781i 0.825473 0.564441i \(-0.190908\pi\)
−0.901557 + 0.432660i \(0.857575\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.00000 6.92820i −0.151729 0.262802i
\(696\) 0 0
\(697\) 6.00000 10.3923i 0.227266 0.393637i
\(698\) 0 0
\(699\) −22.0000 −0.832116
\(700\) 0 0
\(701\) −2.00000 −0.0755390 −0.0377695 0.999286i \(-0.512025\pi\)
−0.0377695 + 0.999286i \(0.512025\pi\)
\(702\) 0 0
\(703\) 20.0000 34.6410i 0.754314 1.30651i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −48.0000 −1.79510
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.00000 1.73205i −0.0371904 0.0644157i
\(724\) 0 0
\(725\) −1.00000 + 1.73205i −0.0371391 + 0.0643268i
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −4.00000 + 6.92820i −0.147945 + 0.256249i
\(732\) 0 0
\(733\) −3.00000 5.19615i −0.110808 0.191924i 0.805289 0.592883i \(-0.202010\pi\)
−0.916096 + 0.400959i \(0.868677\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000 + 13.8564i 0.294684 + 0.510407i
\(738\) 0 0
\(739\) −6.00000 + 10.3923i −0.220714 + 0.382287i −0.955025 0.296526i \(-0.904172\pi\)
0.734311 + 0.678813i \(0.237505\pi\)
\(740\) 0 0
\(741\) 24.0000 0.881662
\(742\) 0 0
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 6.00000 10.3923i 0.219823 0.380745i
\(746\) 0 0
\(747\) −2.00000 3.46410i −0.0731762 0.126745i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 24.0000 + 41.5692i 0.875772 + 1.51688i 0.855938 + 0.517079i \(0.172981\pi\)
0.0198348 + 0.999803i \(0.493686\pi\)
\(752\) 0 0
\(753\) −6.00000 + 10.3923i −0.218652 + 0.378717i
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) 6.00000 0.218074 0.109037 0.994038i \(-0.465223\pi\)
0.109037 + 0.994038i \(0.465223\pi\)
\(758\) 0 0
\(759\) 16.0000 27.7128i 0.580763 1.00591i
\(760\) 0 0
\(761\) 11.0000 + 19.0526i 0.398750 + 0.690655i 0.993572 0.113203i \(-0.0361109\pi\)
−0.594822 + 0.803857i \(0.702778\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.00000 + 3.46410i 0.0723102 + 0.125245i
\(766\) 0 0
\(767\) 12.0000 20.7846i 0.433295 0.750489i
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −30.0000 −1.08042
\(772\) 0 0
\(773\) 1.00000 1.73205i 0.0359675 0.0622975i −0.847481 0.530825i \(-0.821882\pi\)
0.883449 + 0.468528i \(0.155215\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.0000 + 20.7846i 0.429945 + 0.744686i
\(780\) 0 0
\(781\) 16.0000 27.7128i 0.572525 0.991642i
\(782\) 0 0
\(783\) −2.00000 −0.0714742
\(784\) 0 0
\(785\) 20.0000 0.713831
\(786\) 0 0
\(787\) −18.0000 + 31.1769i −0.641631 + 1.11134i 0.343438 + 0.939175i \(0.388408\pi\)
−0.985069 + 0.172162i \(0.944925\pi\)
\(788\) 0 0
\(789\) −12.0000 20.7846i −0.427211 0.739952i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −18.0000 31.1769i −0.639199 1.10712i
\(794\) 0 0
\(795\) 6.00000 10.3923i 0.212798 0.368577i
\(796\) 0 0
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 3.00000 5.19615i 0.106000 0.183597i